首页|基于PCA-RF组合模型的福建省空气负氧离子浓度预测研究

基于PCA-RF组合模型的福建省空气负氧离子浓度预测研究

扫码查看
空气负氧离子(NOI)浓度是评价空气新鲜和清洁程度的重要指标.为了提高NOI浓度的监测能力,综合考虑气象要素和遥感因子,分析NOI浓度的关键影响因子,利用皮尔逊相关分析、PCA分析和随机森林机器学习方法(RF)构建了福建区域NOI浓度的PCA-RF预测模型.研究发现,①NOI浓度分布与风速(Wair)、空气温度(Tair)、大气压强(Pair)、能见度(IVIS)、气溶胶光学厚度(hAOD)、植被指数(INDVI)、湿度指数1(INDMIl)、植被供水指数(IVSWI)和亮度指数(INDSI)呈显著相关(均通过0.01显著性检验),其中Wair、IVIS、INDVI和IVSWI与NOI浓度呈正相关,Tair、Pair、hAOD、INDMI1和INDSI与NOI浓度呈负相关.②主成分数量为7时,方差累计贡献率达到93.36%,能够代表所有因子的大部分信息.③PCA-RF模型最佳的ntree和mtry分别为400和7.对福建区域NOI浓度影响较大的前3个因子依次为Pair、IVIS和 IVSWI.④PCA-RF 模型在验证集上的 RMSE 为 803.73 ions/cm3,R2 为 0.44,MAE 为 548.79 ions/cm3.
Research on air negative oxygen ions concentration prediction in Fujian Province based on PCA-RF combination model
The concentration of air negative oxygen ions(NOI)is an important indicator to evaluate the freshness and cleanliness of the air.In order to improve the monitoring capability of NOI concentration,the key influencing factors of NOI concentration were analyzed by considering meteorological elements and remote sensing factors,and a PCA-RF prediction model of NOI concentration was constructed by using Pearson correlation analysis,PCA analysis,and random forest machine learning method(RF)in Fujian Province.It was found that:⑤The distribution of NOI concentration was significantly correlated with wind speed(Wair),air temperature(Tair),atmospheric pressure(Pair),visibility(IvIS),aerosol optical thickness(hA0D),vegetation index(INDVI),humidity index 1(INDMI1),vegetation water supply index(IVSWI),and brightness index(INDSI)(all passed the 0.01 significance test),where Wair,IVIS,INDV1,and IVSWI were positively correlated with NOI,and Tair,Pair,hA0D,INDMI1 and INDSI were negatively correlated with NOI.②When the principal component score was 7,the cumulative contribution rate of variance reached 93.36%,which can represent most of the information of all factors.③The opti-mal ntree and mtry of the PCA-RF model were 400 and 7,respectively.The top three factors that have a significant impact on the NOI con-centration in the Fujian region are Pair,IVIS,and IVSWI,respectively.④The RMSE of the PCA-RF model on the validation set was 803.73 ions/cm3,R2 was 0.44,and MAE was 548.79 ions/cm3.

air negative oxygen ionsmeteorological factorsremote sensing factorsPCA-RFprediction model

彭继达、张春桂

展开 >

福建省气象科学研究所,福建福州 350008

福建省灾害天气重点实验室,福建福州 350008

空气负氧离子 气象因子 遥感因子 PCA-RF 预测模型

福建省科技计划社会发展引导性(重点)项目

2020Y0072

2024

能源与环保
河南省煤炭科学研究院有限公司 河南省煤炭学会

能源与环保

CSTPCD
影响因子:0.221
ISSN:1003-0506
年,卷(期):2024.46(1)
  • 28