首页|基于MLP-DBN模型的构造煤分布预测策略分析

基于MLP-DBN模型的构造煤分布预测策略分析

扫码查看
构造煤分布情况对煤矿开采活动的安全具有重要意义,为了实现构造煤分布情况的准确预测,以构造煤层的地震属性信息特点为依据,提出了基于深度置信网和多层感知器的构造煤分布预测模型.实验结果显示,多层感知器—深度置信网模型在噪声数据集和无噪声数据集中的拟合度分别为0.965、0.996.与其他模型相比,多层感知器—深度置信网模型平均决定系数和平均解释方差得分分别为0.963、0.87,均高于其他模型;平均均方误差和平均均方根误差分别为0.006、0.078,均低于其他模型.上述结果表明,基于MLP-DBN的构造煤分布预测模型能更准确地对构造煤分布情况进行预测,预测结果与实际情况的拟合度更高,为煤层瓦斯的超前治理提供了有力支持.
Analysis of coal distribution prediction strategy for construction based on MLP-DBN model
The distribution of structural coal is of great significance for the safety of coal mining activities.Therefore,in order to achieve accurate prediction of the distribution of structural coal,based on the characteristics of seismic attribute information of the construction of coal seams,a prediction model for the distribution of construction coal was proposed based on deep confidence networks and multi-layer perceptrons.The experimental results showed that the fitting degrees of the multi-layer perceptron deep confidence network model on noisy and non noisy datasets were 0.965 and 0.996,respectively.Compared with other models,the average coefficient of determina-tion and average explanatory variance score of the multi-layer perceptron deep confidence network model were 0.963 and 0.87,respec-tively,which were higher than other models.The average mean square error and root mean square error were 0.006 and 0.078,respec-tively,which were lower than other models.The above results indicate that the construction coal distribution prediction model based on MLP-DBN can more accurately predict the distribution of construction coal,and the fitting degree between the predicted results and the actual situation is higher,providing strong support for the advanced control of coal seam gas.

tectonic coal distributionseismic attributesdeep confidence networkmulti-layer perceptronboltzmann machine

李伟、雷鹏、黄天尘、张晓利、叶鸥

展开 >

陕西陕煤榆北煤业有限公司,陕西榆林 719000

陕西涌鑫矿业有限责任公司,陕西榆林 719000

西安邮电大学,陕西西安 710000

西安科技大学,陕西西安 710000

展开 >

构造煤分布 地震属性 深度置信网 多层感知器 玻尔兹曼机

国家自然科学基金

61501285

2024

能源与环保
河南省煤炭科学研究院有限公司 河南省煤炭学会

能源与环保

CSTPCD
影响因子:0.221
ISSN:1003-0506
年,卷(期):2024.46(4)
  • 12