首页|基于增强的煤矿井下尘雾图像渲染算法

基于增强的煤矿井下尘雾图像渲染算法

扫码查看
煤矿井下工作环境恶劣,受复杂光照及尘雾等影响监控图像模糊不清,很大程度上影响煤矿作业的安全性.现有合成尘雾数据集方法假定大气光是均匀分布的前提条件在煤矿场景中并不成立,使得深度去雾算法在煤矿场景中泛化性能较差.针对该问题,首先估计清晰图像深度信息,利用Ret-inex理论得到对应带雾图像空间变化的亮度信息,结合图像深度信息和亮度信息通过神经网络训练,在亮度一致性等损失约束下生成能够反映空间亮度变化的带雾图像.另外,考虑到煤矿真实场景光照复杂的特点,对清晰图像进一步增强处理,消除图像去雾后过于昏暗的问题.结合煤矿真实场景的对比实验,表明了本文方法的有效性.
Haze images rendering algorithm in coal mine underground based on enhancement
The working environment underground in coal mines is harsh,and the monitoring images are blurred due to complex lighting and dust mist,which greatly affects the safety of coal mining operations.The existing methods for synthesizing dust and mist datasets as-sume that the atmospheric light is uniform,which does not hold in coal mining scenarios,resulting in poor generalization performance of deep defogging algorithms in coal mining scenarios.In response to this issue,the depth information of clear images were first estimated,and used Retinex theory to obtain the spatial brightness information of fogged images.Combining the depth information and brightness information of the images,a neural network was trained to generate hazy images that can reflect the spatial brightness changes under loss constraints such as brightness consistency.In addition,considering the complex lighting in the real scene of coal mines,clear images were further enhanced to the dim artifacts after image dehazing.Experimental results demonstrate that the proposed method is suitable for synthesizing the realistic haze/clear dataset in coal mine.

illuminationhazy imagesRetineximage enhancementdepth information

管少锋、孙艳玲、朱晨光、高敏、马永强、乔应旭、袁畅

展开 >

平高集团有限公司,河南平顶山 467000

河南理工大学,河南焦作 454003

光照 尘雾图像 Retinex 图像增强 深度信息

国家自然科学基金-河南省联合基金河南省高等学校重点科研项目

U190411923A520037

2024

能源与环保
河南省煤炭科学研究院有限公司 河南省煤炭学会

能源与环保

CSTPCD
影响因子:0.221
ISSN:1003-0506
年,卷(期):2024.46(4)
  • 24