首页|煤岩瓦斯动力灾害风险智能判识与融合预测

煤岩瓦斯动力灾害风险智能判识与融合预测

扫码查看
煤岩瓦斯动力灾害对矿井安全生产造成了极大威胁,由于诱发因素众多,其内在的致灾机理难以被有效探明.为实现煤岩瓦斯动力灾害风险的智能识别与预测,建立了基于CNN的煤岩瓦斯动力灾害风险智能判识与融合预测模型.模型中采用Box-plot与MI方法进行数据清洗,并利用GRA方法建立包含10个风险因素在内的煤岩瓦斯动力灾害的指标体系,通过PCA方法对数据进行降维处理后,输入至CNN模型中进行融合与预测.通过与ANN、BP、RF、SVM模型的对比分析表明,基于CNN的煤岩瓦斯动力灾害风险智能判识与融合预测模型具有更高的准确性,同时此模型的收敛速度更快,验证了此模型在实际工程中具有更可靠的工程价值.
Intelligent identification and fusion prediction of coal,rock and gas dynamic disaster risk
Coal,rock and gas dynamic disaster poses a great threat to mine safety production.Due to many inducing factors,its inherent disaster mechanism is difficult to be effectively explored.In order to realize intelligent identification and prediction of coal,rock and gas dynamic disaster risk,an intelligent identification and fusion prediction model based on CNN was established.In the model,Box-plot and MI methods are used for data cleaning,and GRA method is used to establish an indicator system of coal,rock and gas dynamic disaster including 10 risk factors.After dimensionally reducing the data by PCA method,the data are input into the CNN model for fusion and prediction.The comparison and analysis with ANN,BP,RF and SVM models show that the intelligent identification and fusion prediction model of coal,rock and gas dynamic disaster risk based on CNN has higher accuracy,and the convergence speed of this model is faster,which verifies that this model has more reliable engineering value in practical engineering.

coal,rock and gas dynamic disasterconvolutional neural networkprediction modelrisk identificationdeep learning

罗卫东、杨乘、胡金春、袁荣方、赵喜宇

展开 >

贵州能源产业研究院有限公司,贵州贵阳 550025

贵州林东煤业发展有限责任公司龙凤煤矿,贵州毕节 551700

煤岩瓦斯动力灾害 卷积神经网络 预测模型 风险识别 深度学习

国家重点研发计划中央引导地方科技发展资金项目贵州省科技支撑计划(2021)

2019YFC1805505黔科中引地[2022]4024黔科合支撑[2021]一般515

2024

能源与环保
河南省煤炭科学研究院有限公司 河南省煤炭学会

能源与环保

CSTPCD
影响因子:0.221
ISSN:1003-0506
年,卷(期):2024.46(5)