首页|基于OVT域的五维高密度地震数据陷落柱识别应用

基于OVT域的五维高密度地震数据陷落柱识别应用

扫码查看
陷落柱水害对煤矿安全生产存在威胁,针对陷落柱的特殊性问题,采用全数字高密度三维地震勘探技术,其主要运用基于OVT域的五维地震解释技术.通过OVT域地震数据差异分析,按不同方位角、偏移距进行叠加,并深入分析叠加剖面地震反射特征,以探寻陷落柱响应特征更敏感的优势方位.研究证明,相较于常规叠加剖面,优势方位角剖面更能有效反映陷落柱地质目标的各向异性特性,近偏移距剖面表现出更高、更宽的频带范围,进一步准确地识别陷落柱的分布情况,从而提高陷落柱钻探成功率.为从不同角度、不同偏移距研究陷落柱的地震反射特征提供了指导,突破了原有单一剖面分析的限制,增强了陷落柱地震反射特征的可靠性,进一步提高了陷落柱识别的准确性和可靠性.在疑似陷落柱区域展示了该技术在地质异常探测方面的优越性.
Application of collapse column identification using 5-dimensional high-density seismic data in OVT domain
The collapse column water damage poses a threat to coal mine safety production,focusing on the unique issues associated with collapse column,it utilized all-digital high-density three-dimensional seismic exploration technology,chiefly applying five-dimensional seismic interpretation techniques based on the OVT domain.By analyzing the differences in seismic data in the OVT domain,stacking was carried out according to different azimuth angles and offsets,and in-depth analysis of seismic reflection characteristics in the stacked profile was conducted to explore the advantageous orientation where the response characteristics of collapse columns were more sensi-tive.The study confirmed that profiles of the dominant azimuth angle more effectively reflected the anisotropic properties of geological tar-gets linked to collapse columns compared to traditional stacking profiles.Profiles from shorter offsets displayed a higher and wider frequen-cy band,enabling a more precise identification of collapse column distributions,thus increasing the success rate of drilling of collapse col-umns.This study provides a guide for studying seismic reflection characteristics of collapse columns from various perspectives and offset distances,breaking through the limitations of original single-profile analysis,enhancing the reliability of seismic reflection features of col-lapse columns,significantly improving the accuracy and reliability of subsidence column identification.The research demonstrates the supe-riority of this technique in detecting geological anomalies in regions suspected of containing collapse columns.

OVT dataazimuthal anisotropydivide azimuth anglecollapse column

单蕊、张广忠、聂爱兰

展开 >

中煤科工西安研究院(集团)有限公司,陕西西安 710077

OVT数据 方位各向异性 分方位角 陷落柱

国家自然科学基金天地科技股份有限公司科技创新创业资金专项

420741752022-3-TD-KJHZ001

2024

能源与环保
河南省煤炭科学研究院有限公司 河南省煤炭学会

能源与环保

CSTPCD
影响因子:0.221
ISSN:1003-0506
年,卷(期):2024.46(5)