首页|基于灰色关联—BP神经网络的矿井小构造预测

基于灰色关联—BP神经网络的矿井小构造预测

扫码查看
为了对矿井小构造参数进行预测,利用灰色关联度分析按关联度大小对各介质参数进行排序,选取断层密度、断层分维值和断层强度指数关联度高的介质参数作为主控因素.结果表明,断层密度的分布不稳定,断层强度和断层分维值高值区的分布相对集中,同时也反映了落差大、延伸长、密度大、断层穿插复杂的区域,构造活动强度大,其形成的断层参数值也相应较大.
Prediction of mine small structure based on grey correlation-BP neural network
In order to predict the small structure parameters of mines,grey correlation analysis was used to rank the parameters of each medium according to the degree of correlation.The medium parameters with high correlation between fault density,fault fractal dimen-sion value,and fault strength index were selected as the main controlling factors.The results indicate that the distribution of fault density was unstable,and the distribution of high value areas of fault strength and fault fractal dimension was relatively concentrated.At the same time,it also reflected areas with large drops,long extensions,high density,and complex fault interlayers.The intensity of tectonic activity was high,and the parameter values of the formed faults were correspondingly large.

grey correlationBP neural networksmall structure prediction

王峰、张富魁、肖俊、牛超、王江平、颜飞、雷敏刚、师坤

展开 >

陕西陕煤澄合矿业有限公司,陕西渭南 719000

西安科技大学地质与环境学院,陕西西安 710054

灰色关联 BP神经网络 小构造预测

2024

能源与环保
河南省煤炭科学研究院有限公司 河南省煤炭学会

能源与环保

CSTPCD
影响因子:0.221
ISSN:1003-0506
年,卷(期):2024.46(5)