首页|基于深度学习的煤炭企业设备状态预测算法研究

基于深度学习的煤炭企业设备状态预测算法研究

Research on coal enterprise equipment state prediction algorithm based on deep learning

扫码查看
目前很多煤炭企业的设备状态信息没有统一的设备管理方法,设备状态需要人的主观论断来进行预测,造成煤炭企业开销成本较大且设备状态无法精确的判断.近年来,深度学习具有识别精确度高,处理海量数据快的特点,在图像识别、文本分类和数据分析等大数据处理领域获得了广泛的应用.基于此,针对煤炭企业设备状态预测成本大且无法进行精确判断的问题,采用全连接神经网络的方法,对煤炭企业设备状态进行分类识别,并对设备预测的精确率和损失值进行了可视化分析.通过与经典算法SVM和决策树模型的性能对比,全连接神经网络对煤炭企业设备状态的预测准确率达到了96.74%,优于其他2种机器学习算法,并且网络模型的训练收敛速度较快.全连接神经网络在设备状态预测的应用,能够大量减少煤炭企业人力开支,具有良好的发展前景与研究价值.
At present,there is no unified equipment management method for the equipment status information in many coal enterprises,and the equipment status needs the subjective judgment of people which results in the high cost of coal enterprises and the equipment status can not be accurately judged.In recent years,deep learning has been widely used in big data processing fields such as image rec-ognition,text classification,and data analysis for its high recognition accuracy and fast processing of massive data.Based on this,in re-sponse to the problem of high cost and inability to make accurate judgments in predicting equipment status in coal enterprises,this paper adopted a fully connected neural network method to classify and identify equipment status of coal enterprises,and visualized the accura-cy and loss value of equipment prediction.By comparing the performance with classical algorithms SVM and decision tree models,the fully connected neural network achieved a prediction accuracy of 96.74%for the equipment status of coal enterprises,which was supe-rior to the other two machine learning algorithms,and the training convergence speed of the network model was fast.The application of fully connected neural networks in device state prediction can significantly reduce labor costs in coal enterprises,and has good develop-ment prospects and research value.

deep learningmachine learningfully connected neural networkequipment status prediction

郝俊杰、陈达

展开 >

河南能源鹤煤公司,河南鹤壁 458000

深度学习 机器学习 全连接神经网络 设备状态预测

国家自然科学基金

61503124

2024

能源与环保
河南省煤炭科学研究院有限公司 河南省煤炭学会

能源与环保

CSTPCD
影响因子:0.221
ISSN:1003-0506
年,卷(期):2024.46(5)