首页|闭坑煤矿采空区隐患高分辨率时序InSAR识别技术

闭坑煤矿采空区隐患高分辨率时序InSAR识别技术

扫码查看
在实际应用过程中,由于采空区隐患分布地质结构差异较大,传统InSAR识别技术在单位时序下处理相位信息量较大,且前期检测采集信息量巨大,造成所得识别结果出现偏差的概率明显增加.为解决这一问题,引入高分辨率时序InSAR识别技术,主要通过建立闭坑煤矿采空区隐患高分辨率数值模型、相干目标的高分辨率时序InSAR分析、特征值分解相位时序InSAR识别3部分,优化识别全局参量,提升识别环境变量的处理能力,实现快速识别隐患特征的效果.经过仿真数据的对比,实验表明,高分辨率时序InSAR识别技术具有识别能力强、处理速度快、隐患识别准的优秀能力,能够解决当下传统识别技术存在的不足,且未来发展前景广阔.
High resolution time-series InSAR identification technology of hidden dangers in goaf of closed pit coal mine
In the practical application process,due to the large difference in the geological structure of the hidden danger distribution in the goaf,the traditional InSAR identification technology handles a large amount of phase information in the time-series,and the huge a-mount of information collected in the early detection,resulting in the significant increase in the probability of deviation in the identifica-tion results.In order to solve this problem,the introduction of high resolution-series InSAR recognition technology,mainly through three parts of the establishment of closed pit coal mine goaf hidden danger high resolution numerical model,coherent target high resolution time-series InSAR analysis,characteristic value decomposition phase sequence InSAR recognition,optimize the recognition of global pa-rameters,enhance the processing ability of identifying environmental variables,and achieve the effect of quickly identifying hidden dan-ger features.Improve the processing ability of identifying environmental variables,realize the effect of rapid identification hidden fea-tures.The comparative experiment of simulation data shows that the high resolution time-series InSAR recognition technology has strong identification ability,fast processing speed and accurate identification of hidden dangers.It can solve the shortcomings of the current tra-ditional identification technology,and the future development prospect is broad.

closed pit coal minehidden dangers in goafhigh resolutiontime-series InSAR

鹿友磊、牛永华、王曦韡

展开 >

中煤华晋集团有限公司王家岭矿,山西河津 043300

闭坑煤矿 采空区隐患 高分辨率 时序InSAR

2024

能源与环保
河南省煤炭科学研究院有限公司 河南省煤炭学会

能源与环保

CSTPCD
影响因子:0.221
ISSN:1003-0506
年,卷(期):2024.46(6)
  • 15