首页|基于改进MobileNet的带式输送机煤量检测研究

基于改进MobileNet的带式输送机煤量检测研究

扫码查看
为实现快速、准确、可靠的带式输送机煤量检测,提高带式输送机的可靠性和安全性,基于视觉的非接触式煤量检测技术得到广泛使用.针对带式输送机煤量检测任务,结合具体工业应用场景,设计基于视觉的煤量检测方法,采用图片抓取、图像处理、图片分类的流程预测煤量;针对图片分类问题,设计改进MobileNet分类算法,使用空间和通道注意力机制抑制无效信息的干扰,使用CSP(Cross Stage Partial)结构提高网络的表达能力;针对数据标签分布不均的问题,采用下采样方法维持训练时输入图片标签均衡.最后,在真实的煤量图片数据集上进行了对比实验.结果表明,提出的改进算法在准确度、浮点数运算量和推理时间都有较好的表现.
Research on coal quantity detection of belt conveyors based on improved MobileNet
In order to realize fast,accurate,and reliable detection of coal quantity on belt conveyors and improve the reliability and safe-ty of belt conveyors,vision-based non-contact coal quantity detection technology has been widely used.Aiming at the detection task of belt conveyor coal quantity,combined with specific industrial application scenarios,a vision-based coal quantity detection method was designed.The process of image capture,image processing,and image classification was used to predict the coal quantity.Design an im-proved MobileNet classification algorithm for image classification problems,use the space and the channel attention mechanism to sup-press the interference of invalid information,and use the CSP(Cross Stage Partial)structure to improve the expressive ability of the network.To solve the problem of uneven distribution of data labels,the down-sampling method was used to maintain the balance of input picture labels during training.Finally,the comparative experiment was conducted on a real coal quantity image dataset.The results show that the proposed improved algorithm has better performance in terms of accuracy,floating-point operations,and inference time.

computer visionbelt conveyorcoal quantity detectionclassify algorithmMobileNetneural network

王涛

展开 >

中煤天津设计工程有限责任公司,天津 300131

机器视觉 带式输送机 煤量检测 分类算法 MobileNet 神经网络

2024

能源与环保
河南省煤炭科学研究院有限公司 河南省煤炭学会

能源与环保

CSTPCD
影响因子:0.221
ISSN:1003-0506
年,卷(期):2024.46(7)
  • 10