首页|基于改进MobileNet的带式输送机煤量检测研究

基于改进MobileNet的带式输送机煤量检测研究

Research on coal quantity detection of belt conveyors based on improved MobileNet

扫码查看
为实现快速、准确、可靠的带式输送机煤量检测,提高带式输送机的可靠性和安全性,基于视觉的非接触式煤量检测技术得到广泛使用.针对带式输送机煤量检测任务,结合具体工业应用场景,设计基于视觉的煤量检测方法,采用图片抓取、图像处理、图片分类的流程预测煤量;针对图片分类问题,设计改进MobileNet分类算法,使用空间和通道注意力机制抑制无效信息的干扰,使用CSP(Cross Stage Partial)结构提高网络的表达能力;针对数据标签分布不均的问题,采用下采样方法维持训练时输入图片标签均衡.最后,在真实的煤量图片数据集上进行了对比实验.结果表明,提出的改进算法在准确度、浮点数运算量和推理时间都有较好的表现.
In order to realize fast,accurate,and reliable detection of coal quantity on belt conveyors and improve the reliability and safe-ty of belt conveyors,vision-based non-contact coal quantity detection technology has been widely used.Aiming at the detection task of belt conveyor coal quantity,combined with specific industrial application scenarios,a vision-based coal quantity detection method was designed.The process of image capture,image processing,and image classification was used to predict the coal quantity.Design an im-proved MobileNet classification algorithm for image classification problems,use the space and the channel attention mechanism to sup-press the interference of invalid information,and use the CSP(Cross Stage Partial)structure to improve the expressive ability of the network.To solve the problem of uneven distribution of data labels,the down-sampling method was used to maintain the balance of input picture labels during training.Finally,the comparative experiment was conducted on a real coal quantity image dataset.The results show that the proposed improved algorithm has better performance in terms of accuracy,floating-point operations,and inference time.

computer visionbelt conveyorcoal quantity detectionclassify algorithmMobileNetneural network

王涛

展开 >

中煤天津设计工程有限责任公司,天津 300131

机器视觉 带式输送机 煤量检测 分类算法 MobileNet 神经网络

2024

能源与环保
河南省煤炭科学研究院有限公司 河南省煤炭学会

能源与环保

CSTPCD
影响因子:0.221
ISSN:1003-0506
年,卷(期):2024.46(7)
  • 10