首页|自适应Laplace小波字典的矿山微震信号稀疏降噪方法

自适应Laplace小波字典的矿山微震信号稀疏降噪方法

扫码查看
针对矿山微震信号降噪问题,提出了一种基于自适应Laplace小波字典的稀疏降噪方法.该方法从矿山微震信号特征波形的先验知识分析入手,首先通过相关滤波法选取与微震信号特征波形最匹配的Laplace小波参数,并以此构造Laplace小波参数字典.然后结合正交匹配追踪(OMP)算法,稀疏重构出微震信号的特征波形.考虑到相关滤波法计算量大、时间较长,使用鲸鱼优化算法(WOA)进行快速的全局参数寻优.仿真微震信号和实测信号分析结果表明,所提出方法可有效重构出微震信号的特征波形,实现微震信号的降噪,且对噪声具有一定的抗干扰能力.相比常用的集合经验模态分解(EEMD)方法,提出的基于自适应Laplace小波字典的稀疏降噪方法具有一定的优越性.
A sparse denoising method based on adaptive Laplace wavelet dictionary for mine microseismic signal
Aiming at the problem of mine microseismic signal noise reduction,a sparse noise reduction method based on an adaptive La-place wavelet dictionary was proposed.Beginning with an a priori knowledge analysis of the characteristic waveform of the mine micro-seismic signal,the Laplace wavelet parameters that best match the characteristic waveform of the microseismic signal were first selected by the correlation filtering method,and a Laplace wavelet parameter dictionary was constructed.The characteristic waveform of the mi-croseismic signal was then sparsely reconstructed by combining the orthogonal matching pursuit(OMP)algorithm.Considering that pa-rameter selection by the correlation filtering method,the Whale Optimization Algorithm(WO A)was used to achieve automatic and opti-mal parameter selection.The analysis results of the simulated signals and the actual measured signals show that the proposed method can effectively reconstruct the characteristic waveform and realize the noise reduction of the microseismic signal,and has a certain anti-inter-ference ability to the noise.Moreover,the proposed sparse denoising method based on adaptive Laplace wavelet dictionary has certain superiority over the commonly used ensemble empirical mode decomposition(EEMD)method.

noise reduction of microseismic signalLaplace wavelet dictionarysparse decompositionfeature reconstruction

李亚飞、何金刚、周勇、胡俊锋、张磊

展开 >

大悟振兴石业有限责任公司,湖北孝感 4328202

湖北祝安安全技术有限公司,湖北襄阳 441025

江西交通职业技术学院,江西南昌 330013

武汉科技大学,湖北武汉 430081

展开 >

微震信号降噪 Laplace小波字典 稀疏分解 特征重构

国家自然科学基金资助项目湖北省安全生产专项资金科技项目江西省自然科学基金重点项目

51805382SJZX2021101620224ACB204017

2024

能源与环保
河南省煤炭科学研究院有限公司 河南省煤炭学会

能源与环保

CSTPCD
影响因子:0.221
ISSN:1003-0506
年,卷(期):2024.46(10)