首页|烟丝物理指标对其回弹特性的影响研究

烟丝物理指标对其回弹特性的影响研究

扫码查看
以5 种牌号常规卷烟成品烟丝为研究对象,采用多重线性回归分析方法研究烟丝物理指标对其回弹特性的影响规律,并构建基于BP神经网络的烟丝回弹特性预测模型。结果表明:烟丝物理指标对烟丝回弹特性的影响程度从大到小依次为碎丝率>中丝率>长丝率>填充值>弹性>含水率,其中,中丝率、长丝率、弹性、含水率与烟丝回弹特性呈正相关关系,碎丝率、填充值与烟丝回弹特性呈负相关关系;所构建的BP 神经网络预测模型,测试集预测值与真实值比对R2 为0。965 7,总体模型精度达到98。10%,烟丝回弹特性预测值与实测值之间的差异较小,模型具有较高的预测准确性和可靠性,可用于烟丝回弹特性的精确估算。
Research on the influence of physical indicators of cut tobacco on its rebound characteristics
Using 5 grades of conventional cigarette finished tobacco as the research object,multiple linear regression analysis method was used to study the influence of physical indicators of cut tobacco on its rebound characteristics,and a prediction model for tobacco rebound characteristics based on BP neural network was constructed.The results showed that the degree of influence of physical indicators of cut tobacco on the rebound characteristics of tobacco was ranked from large to small as follows:broken tobacco rate>medium tobacco rate>long tobacco rate>filling value>elasticity>moisture content.Among them,medium tobacco rate,long tobacco rate,elasticity,and moisture content were positively correlated with the rebound characteristics of tobacco,while broken tobacco rate and filling value were negatively correlated with the rebound characteristics of tobacco.In the constructed BP neural network prediction model,the comparison between the predicted value of the test set and the true value R2 was 0.965 7,the overall model accuracy reached 98.10%.The difference between the predicted and measured values of cut tobacco rebound characteristics was small,and the model had high prediction accuracy and reliability,which could be used for accurate estimation of cut tobacco rebound characteristics.

physical indicator of cut tobaccorebound characteristicsmultiple linear regression analysisBP neural network

李晓、郭朋玮、周茂忠、孙觅、李劲锋、张浩博、李宜馨、纪晓楠

展开 >

郑州轻工业大学 烟草科学与工程学院,河南 郑州 450001

红云红河烟草(集团)有限责任公司,云南 昆明 650231

河南中烟工业有限责任公司 技术中心,河南 郑州 450000

烟丝物理指标 回弹特性 多重线性回归分析 BP神经网络

中国烟草总公司标准项目河南中烟工业有限责任公司重点项目

2020QB0012AW201911

2024

轻工学报
郑州轻工业学院

轻工学报

北大核心
影响因子:0.369
ISSN:2095-476X
年,卷(期):2024.39(1)
  • 19