首页|基于改进Mask R-CNN模型的粘连烟丝识别方法

基于改进Mask R-CNN模型的粘连烟丝识别方法

扫码查看
为精准识别并高效分割粘连烟丝,提出一种基于改进掩码区域卷积神经网络模型(Mask R-CNN)的粘连烟丝识别方法。首先,采集粘连烟丝图像,通过图像增强操作将数据集扩充到训练模型所需的样本数量;其次,在Mask R-CNN模型的基础上对训练样本中的粘连烟丝图像进行边缘特征提取、分形特征提取,获得更清晰、连续的图像边缘特征信息和纹理特征信息;再次,将原始特征、边缘特征、分形特征进行融合以充分利用不同层次的特征信息,丰富底层特征;最后,通过引入混合注意力机制关注特征图的通道和空间维度,从而提高粘连烟丝识别的效率和准确性。模型性能对比结果表明:基于改进Mask R-CNN模型的识别方法的平均交并比(Avg。MIoU)为85。29%,类别平均像素准确率(Avg。MPA)为84。33%,其能够快速、准确地识别并分割出单根烟丝,识别效果优于Mask R-CNN和DeepLabV3+模型识别方法,可为后续烟丝宽度检测提供技术支持。
Adhesive tobacco shreds recognition method based on improved Mask R-CNN model
To achieve accurate identification and efficient segmentation of adhesive tobacco shreds,a method for adhesive tobacco shreds recognition based on an improved Mask R-CNN(Mask Region-based Convolutional Neural Network)model was proposed.Firstly,adhesive tobacco shreds images were collected,and the dataset was aug-mented through image enhancement operations to expand it to the required sample size for training the model.Sec-ondly,edge feature extraction and fractal feature extraction were performed on the adhesive tobacco shreds images in the training set based on Mask R-CNN,resulting in clearer and more continuous image edge features and texture feature information.Subsequently,the original features,edge features,and fractal features were fused to fully uti-lize features at different levels and enrich low-level features.Finally,by introducing a hybrid attention mechanism that focused on both channel and spatial dimensions of feature maps,the efficiency and accuracy of tobacco shred recognition were improved.Experimental results showed that the mean intersectionover union(Avg.MIoU)of the recognition method based on the improved Mask R-CNN model was 85.29%,and the mean class pixel accuracy(Avg.MPA)was 84.33%,under different adhesion conditions enabling precise identification of tobacco shreds and outperforming the original Mask R-CNN and DeepLabV3+models.This method could rapidly and accurately identify and segment adhesive tobacco shreds,providing technical support for subsequent tobacco shred width detection.

adhesive tobacco shredimproved Mask R-CNN modeledge feature extractionfeature fusionhybrid attention mechanism

张伟伟、姬远鹏、元春波、王君婷、齐晓任、张卫正、李萌、饶智

展开 >

郑州轻工业大学计算机科学与技术学院,河南郑州 450001

浙江中烟工业有限责任公司宁波卷烟厂,浙江宁波 315504

湖北中烟工业有限责任公司技术中心,湖北武汉 430040

河南省烟草公司安阳市公司,河南安阳 455002

郑州轻工业大学烟草科学与工程学院,河南郑州 450001

红云红河烟草(集团)有限责任公司,云南 昆明 650032

展开 >

粘连烟丝 改进Mask R-CNN模型 边缘特征提取 特征融合 混合注意力机制

2024

轻工学报
郑州轻工业学院

轻工学报

北大核心
影响因子:0.369
ISSN:2095-476X
年,卷(期):2024.39(5)