首页|多策略改进MOA的卷积神经网络超参数优化算法

多策略改进MOA的卷积神经网络超参数优化算法

Hyperparameter optimization of convolutional neural network via multi-strategy improved MOA

扫码查看
针对卷积神经网络(convolutional neural network,CNN)在各类任务中性能的优劣受超参数的影响,以及传统蜉蝣优化算法(mayfly optimization algorithm,MOA)的求解精度不高等问题,提出多策略改进MOA的CNN超参数优化算法.首先,利用佳点集理论和Tent映射策略对雄雌种群分别初始化,使种群分布更加均匀多样.然后,研究非线性动态调速策略,对蜉蝣速度更新中重力系数和正吸引系数进行非线性改进;同时引入对数型衰减权重策略,对蜉蝣位置进行更新,构建多策略改进MOA,满足MOA搜索能力、收敛速度和精度的要求.最后,将多策略改进MOA应用于CNN,设计多策略改进MOA的CNN超参数优化算法,旨在提升CNN整体分类性能.在7个基准函数上对改进的MOA进行实验验证改进算法的有效性,在MNIST数据集和Fashion-MNIST数据集上进行图像分类实验.实验结果表明,提出的算法能够有效提升CNN模型的召回率和准确率,具有较强的泛化能力.
To address the issues of the impact of hyperparameters on the performance of convolution-al neural network(CNN)in various tasks,and to overcome the limited precision of traditional may-fly optimization algorithm(MOA),a hyperparameter optimization method of CNN via multi-strategy improved MOA is proposed.First,population initialization is enhanced by separately initializing the male and female populations using the theory of good point set and the Tent mapping strategy,ensur-ing a more uniform and diverse distribution of the population.Second,a nonlinear dynamic speed regulation strategy is studied,which non-linearly improves the gravitational coefficient and positive attraction coefficient in the velocity update of the mayfly algorithm weight strategy is used to update the ephemera position,and a multi-strategy improved MOA algorithm is constructed to meet the re-quirements of the search ability,convergence speed and accuracy of the MOA.Finally,the multi-strategy improved MOA is applied into the CNN model to design a hyperparameter optimization al-gorithm,aiming at enhancing the overall classification performance of the CNN.Experimental re-sults conducted on seven benchmark functions demonstrated the effectiveness of the improved may-fly optimization algorithm.Furthermore,classification experiments are conducted on the MNIST and Fashion-MNIST datasets.The experimental results indicated that the developed algorithm can effec-tively enhance the recall rate and accuracy of the CNN model,exhibiting strong generalization capa-bility.

mayfly optimizationgood point settent mappingconvolutional neural network

孙林、刘天诺、徐文静

展开 >

天津科技大学人工智能学院,天津 300457

蜉蝣优化 佳点集 Tent映射 卷积神经网络

2024

闽南师范大学学报(自然科学版)
漳州师范学院

闽南师范大学学报(自然科学版)

影响因子:0.272
ISSN:1008-7826
年,卷(期):2024.37(3)