首页|解耦融合机制的金属表面缺陷小样本分割网络

解耦融合机制的金属表面缺陷小样本分割网络

Decoupling fusion mechanism-based network for metal surface defect few-shot segmentation

扫码查看
精准的金属表面缺陷小样本分割是工业生产制造和成本控制的重要基础.但主流遵循元学习范式的小样本分割算法利用单一原型编码特征,难以表示缺陷样本前景-背景的复杂分布,因此建立一个缓解前景-背景感知模糊的模型仍是目前的难点问题.针对上述问题,提出一个基于解耦融合机制的小样本分割网络DFMNet(decoupling fusion mechanism-based network).将缺陷分割任务解耦为已知类(缺陷区域)和基类(背景区域)2个语义分割子任务,利用基于图推理的元解析模块产生已知类的粗分割掩码,以及基于背景描述子的基类引导模块输出基类的粗分割掩码,实现对应子任务目标.引入基于解耦融合策略的信息融合模块处理两个子任务的粗预测结果,缓解前景-背景不平衡的问题,实现更精细地分割.引入基于Gram矩阵的自适应调整因子,使模型更多关注场景差异所带来的特征变化,提高模型的泛化能力.在金属表面缺陷数据集上进行实验,与现有多种小样本分割网络进行了广泛的对比分析和消融实验.结果表明,该方法有效缓解了前景-背景感知模糊的问题,达到了最先进的效果.
Precise few-shot segmentation of metal surface defects is vital for industrial production and cost control.However,mainstream few-shot segmentation algorithms following the meta-learn-ing paradigm,which employ single prototypes for feature encoding,struggle to represent the com-plex foreground-background distribution of defect samples.Hence developing a model to alleviate the foreground-background perception ambiguity remains a significant challenge.To address this is-sue,we propose a Decoupling Fusion Mechanism-based Network(DFMNet).The defect segmenta-tion task is decomposed into two semantic segmentation subtasks one for known classes(defect ar-eas)and another for base classes(background areas).The network employs a graph reasoning-based meta parsing module to generate coarse segmentation masks for seen classes,and utilizes a back-ground descriptor-based base class guiding module for base class coarse masks,achieving the objec-tives of the corresponding subtasks.The introduction of an information fusion module,grounded in a decoupling fusion strategy,processes the coarse predictions of both subtasks,mitigating the fore-ground-background imbalance and enabling finer segmentation.An adaptive adjustment factor based on the Gram matrix is introduced to focus the model more on feature variations caused by scene dif-ferences,thereby enhancing the model's generalization ability.Experiments conducted on the metal surface defect datasets,with extensive comparative analysis and ablation studies against various ex-isting few-shot segmentation networks,demonstrate that our method effectively alleviates the issue of foreground-background perception ambiguity and achieves state-of-the-art results.

metal surface defect detectionfew-shot semantic segmentationgraph reasoningback-ground descriptoradaptive adjustment factors

彭明、丁汉泽、刘艳芳、张继炎

展开 >

龙岩学院数学与信息工程学院,福建 龙岩 364012

金属表面缺陷检测 小样本分割 图推理 背景描述子 自适应调整因子

2024

闽南师范大学学报(自然科学版)
漳州师范学院

闽南师范大学学报(自然科学版)

影响因子:0.272
ISSN:1008-7826
年,卷(期):2024.37(3)