首页|可变多粒球粗糙集模型

可变多粒球粗糙集模型

Variable multi-granularity ball rough set model

扫码查看
构建与乐观多粒球粗糙集模型对应的悲观多粒球粗糙集模型,并设计一种介于这2种模型之间的可变多粒球粗糙集模型,以适用于不同决策问题.讨论该模型的相关性质和提出相关的不确定性度量,并设计3种不同的多粒球粗糙集模型正域生成算法.该算法通过纯度的设置对数据进行粒球划分,能够有效地刻画数据之间的内在联系.最后,通过对八组UCI数据集的实验分析验证该模型的可行性和有效性.
A pessimistic multi-granularity ball rough set model is developed as the counterpart to the optimistic model,and a variable multi-granularity ball rough set model is designed to address differ-ent decision-making problems.The relevant properties of this model are explored,and uncertainty measures associated with it are introduced.Three distinct positive region generation algorithms for multi-granular ball rough set models are proposed.These algorithms partition the data into granular balls by adjusting the purity parameter,effectively capturing the inherent relationships within the da-ta.Finally,experimental evaluations on eight UCI datasets confirm the feasibility and effectiveness of the proposed model.

granular-ball computingpessimistic multi-granulation rough setmulti-granularity ball rough setvariable granularitypurity

林国平、蒋珊珊、马周明

展开 >

闽南师范大学数学与统计学院,福建 漳州 363000

福建省粒计算及其应用重点实验室,福建 漳州 363000

粒球计算 悲观多粒粗糙集 多粒球粗糙集 可变粒度 纯度

2024

闽南师范大学学报(自然科学版)
漳州师范学院

闽南师范大学学报(自然科学版)

影响因子:0.272
ISSN:1008-7826
年,卷(期):2024.37(4)