首页|机器学习的著作权侵权判定:超越非表达性使用理论

机器学习的著作权侵权判定:超越非表达性使用理论

扫码查看
针对人工智能机器学习的著作权侵权判定难题,近期引人注目的非表达性使用理论根据"表达性机器学习"和"非表达性机器学习"的类型化方法划分侵权责任,并提倡禁止人工智能模仿特定作者的个人创作风格.然而,复制权的目的解释、历史解释和判例分析表明,非表达性使用理论未能走出长久以来"实施复制即侵权"的理论误区,面临逻辑、法理和现实层面的三重困境.对此,应当对非表达性使用理论进行扬弃,重构机器学习的著作权侵权判定标准,以公众接触原作品表达的高度盖然性取代"实施复制即侵权"的形式主义理念.
On the Determination of Copyright Infringement in Machine Learning:Beyond the Non-Expressive Use Theory
Regarding the difficult issue of determining copyright infringement in the machine learning of artificial intelligence(AI),the theory of the non-expressive use which has recently attracted significant attention delineates the infringement liability based on the method of categorizing machine learning into"expressive one"and"non-expressive one",and advocates for prohibiting AI from imitating the personal creative style of specific authors.However,the teleological interpretation,historical interpretation and case-based analysis of the reproduction right reveal that the theory of non-expressive use fails to overcome the long-standing misconception that"carrying out the reproduction equals infringement",facing three-faceted predicaments at the logical,jurisprudential,and practical levels.Thus,it is necessary to critically assimilate the theory of non-expressive use,re-establish a new standard for determining copyright infringement in machine learning,replace the formalistic notion of"carrying out reproduction equals infringement"with the high probability of public access to the expression of the original work.

Machine LearningArtificial IntelligenceInfringement DeterminationNon-expressive UseHigh Probability

涂藤

展开 >

广东财经大学人工智能法研究中心,广东 广州 510320

机器学习 人工智能 侵权判定 非表达性使用 高度盖然性

2024

政治与法律
上海社会科学院法学研究所

政治与法律

CSTPCDCSSCICHSSCD北大核心
影响因子:1.545
ISSN:1005-9512
年,卷(期):2024.(10)
  • 8