首页|动车组制动模块装配缺陷视觉检测研究

动车组制动模块装配缺陷视觉检测研究

扫码查看
针对动车组制动模块结构复杂,装配过程子部件种类、数量较多,易产生混装、漏装等问题,建立一种基于机器视觉的装配检测模型.首先,通过数据集构建、模型训练、推理测试等步骤,完成YOLOv5部件检测模型的建立并进行计数统计判断.然后,对YOLOv5输出的位置坐标与类别数据,通过坐标转换和标准化处理使位置信息区分度提升.进一步,在训练集上运用K-Means进行聚类学习,生成部件各位置簇的中心坐标和内外限值.最后,计算待测部件位置坐标与各簇中心的欧氏距离,结合内外限值判定位置的正确性.同时,为便于工程部署,在推理端采用ONNXRuntime框架进行可视化系统的开发.结果表明:检测方法具有较高的准确率和查全率,同时具备位置检测功能,较现有人工目视检查方法更加准确、稳定、高效,具备工程应用价值.
Research on Visual Inspection of Assembly Defects of EMU Brake Module

王玥龙、刘鹏、刘庸奇、姚伟君

展开 >

中国铁道科学研究院集团有限公司 机车车辆研究所,北京 100081

北京纵横机电科技有限公司,北京 100094

目标检测 YOLOv5 K-Means 机器视觉 制动模块 装配检测

国家重点研发计划中国铁道科学研究院集团有限公司科研项目

2019YFB17050002022YJ222

2024

制造业自动化
北京机械工业自动化研究所

制造业自动化

CSTPCD
影响因子:0.482
ISSN:1009-0134
年,卷(期):2024.46(10)