首页|长三角地区PM2.5时空分布及环境驱动因素分析

长三角地区PM2.5时空分布及环境驱动因素分析

扫码查看
本研究分析了2015-2020年长三角地区地面PM2.5浓度的时空变化特征,并利用随机森林回归法分析环境驱动因素.结果发现:2015-2020年长三角地区PM2.5浓度整体呈下降趋势,2020年初受疫情影响PM2.5浓度降至趋势线最低点,之后浓度呈回升趋势.长三角地区的西部和北部多为高高聚集区,是污染防治的重点和难点;南部和东部多为低低聚集区,空气质量较好.随机森林分析发现7个环境变量对PM2.5季节平均浓度的解释率均超过98%.其中,降水和温度是PM2.5重要的驱动因素,秋季和冬季野火密度是冬季PM2.5浓度最重要的驱动因素.火灾信息的纳入有助于提高PM2.5浓度预测的准确性,并为政府制定空气污染防控措施提供可靠依据.
An Analysis of Temporal and Spatial Distribution of PM2.5 and Environ-mental Drivers in the Yangtze River Delta
The findings revealed a decreasing trend in PM2.5 concentration during the specified period,reaching its lowest point in early 2020 due to the impact of the COVID-19 pandemic,followed by a slight in-crease thereafter.The analysis identified high-high clusters of PM2.5 concentration in the west and north regions,signifying areas of focus and challenge for pollution prevention and control efforts,while low-low clusters were observed in the south and east with better air quality conditions.Random forest analysis indicated that seven en-vironmental variables accounted for over 98%of the variance,with precipitation and temperature emerging as significant drivers.Notably,wildfire density in winter and autumn emerged as the primary driver of PM2.5 con-centration during winter months.The integration of fire-related data improved the accuracy of PM2.5 concentra-tion predictions,offering valuable insights for policymakers to develop effective air pollution control measures.

temporal and spatial distribution of PM2.5environmental driversspatial clustering analysisrandom forestYangtze River Delta

陈艺敏、郑璐嘉、苏漳文

展开 >

漳州职业技术学院石油化工学院,福建漳州 363000

福建省精细化工应用技术协同创新中心,福建漳州 363000

PM2.5时空分布 环境驱动因素 空间聚类分析 随机森林 长三角地区

福建省中青年教师教育科研项目漳州市食品产业技术研究院资助项目

JAT220690ZSY2021108

2024

漳州职业技术学院学报
漳州职业技术学院

漳州职业技术学院学报

影响因子:0.295
ISSN:1673-1417
年,卷(期):2024.26(2)
  • 11