首页|Analysis of the three-dimensional delamination behavior of stretchable electronics applications

Analysis of the three-dimensional delamination behavior of stretchable electronics applications

扫码查看
Stretchable electronics offer potential application areas in biological implants interacting with human tissue, while also facilitating increased design freedom in electronics. A key requirement on these products is the ability to withstand large deformations during usage without losing their integrity. Experimental observations show that delamination between the metal conductor lines and the stretchable substrate may eventually lead to short circuits while also the delaminated area could result in cohesive failure of the metal lines. Interestingly, peel tests show that the rubber is severely lifted at the delamination front caused by its high compliance. To quantify the interface in terms of cohesive zone properties, these parameters are varied such that the experimental and numerical peel-force curve and rubber-lift geometry at the delamination front match. The thus obtained interface properties are used to simulate the delamination behavior of actual three-dimensional stretchable electronics samples loaded in tension.

stretchable electronicsdelaminationpeel testfracture mechanicscohesive zone modelingthin films

O. van der Sluis、P.H.M. Timmermans、E.J.L. van der Zanden、J.P.M. Hoefnagels

展开 >

Philips Applied Technologies, High Tech Campus 7, 5656 AE Eindhoven, The Netherlands Department of Precision and Microsystem Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands

Philips Applied Technologies, High Tech Campus 7, 5656 AE Eindhoven, The Netherlands

Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

2010

Key engineering materials

Key engineering materials

ISSN:1013-9826
年,卷(期):2010.417/418