首页|Improving the Performance of High Temperature Protonic Conductor (HTPC) Electrolytes for Solid Oxide Fuel Cell (SOFC) Applications
Improving the Performance of High Temperature Protonic Conductor (HTPC) Electrolytes for Solid Oxide Fuel Cell (SOFC) Applications
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
Trans Tech Publications Ltd
This work investigated the possibility of coupling the high conductivity of cerates and the good chemical stability of zirconates as proton conductor electrolytes for solid oxide fuel cells (SOFCs). Two different approaches are discussed: the synthesis of barium cerate and zirconate solid solutions, and the fabrication of a bilayer electrolyte made of a Y-doped barium cerate pellet covered by a thin protecting layer of Y-doped barium zirconate. The chemical stability of the tailored samples was tested exposing them to 100% CO_2 atmosphere at 700℃ for 3 h. X-ray diffraction (XRD) analysis was used to investigate the phase composition of the specimens before and after the CO_2 treatment. Electrochemical impedance spectroscopy (EIS) measurements were carried out in humidified H_2. Hydrogen-air breathing fuel cell experiments were carried out at 700℃.
proton conductorsIT-SOFCschemical stability
Emiliana Fabbri、Daniele Pergolesi、Alessandra D'Epifanio、Elisabetta Di Bartolomeo、Giuseppe Balestrino、Silvia Licoccia、Enrico Traversa
展开 >
NAST Center & Department of Chemical Science and Technology, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133 Rome, Italy
INFM-CNR Coherentia & Department of Mechanical Engineering, University of Rome Tor Vergata, via del Politecnico, 00133 Rome, Italy