首页|Modeling and Simulation of Microstructure Evolution in Extruded Aluminum Profiles
Modeling and Simulation of Microstructure Evolution in Extruded Aluminum Profiles
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
The purpose of this work is to predict the microstructure evolution of aluminum alloys during hot metal forming processes using the Finite Element Method (FEM). Here, the focus will be on the extrusion process of aluminum alloys. Several micromechanical mechanisms such as diffusion, recovery, recrystallization and grain growth are involved in various subsequent stages of the extrusion and the cooling process afterward. The evolution of microstructure parameters is motivated by plastic deformation and temperature. A number of thermomechanical aspects such as plastic deformation, heat transfer between the material and the container, heat generated by friction, and cooling process after the extrusion are involved in the extrusion process and result in changes in temperature and microstructure parameters subsequently. Therefore a thermomechanicaHy coupled modeling and simulation which includes all of these aspects is required for an accurate prediction of the microstructure evolution. A brief explanation of the isotropic thermoelastic viscoplastic material model including some of the simulation results of this model, which is implemented as a user material (UMAT) in the FEM software ABAQUS, will be given. The microstructure variables are thereby modeled as internal state variables. The simulation results are finally compared with some experimental results.
a luminum alloysextrusionmicrostructurefunctionally-graded material (FGM)simulation
F. Parvizian、T. Kayser、B. Svendsen
展开 >
Institute of Mechanics, Dortmund University of Technology, Leonhard-Euler-Str. 5, D-44227, Dortmund, Germany