首页|Grain Boundary Sliding Below Ambient Temperature in H.C.P. Metals
Grain Boundary Sliding Below Ambient Temperature in H.C.P. Metals
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
Trans Tech Publications Ltd
Hexagonal close-packed metals and alloys show significant creep behavior with extremely low activation energies at and below ambient temperature even below their 0.2% proof stresses. It is caused by straightly-aligned dislocation arrays in a single slip system without any dislocation cuttings. These dislocation arrays should, then, pile up at grain boundary (GB) because of violation of von Mises' condition in H.C.P. structure. The piled-up dislocations have to be accommodated by GB sliding. Electron back scatter diffraction (EBSD) analyses and atomic force microscope (AFM) observations were performed to reveal the mechanism of GB sliding below ambient temperature in H.C.P. metals as an accommodation mechanism of ambient temperature creep. EBSD analyses revealed that crystal lattice rotated near GB, which indicates the pile up of lattice dislocations at GB. AFM observation showed a step caused by GB sliding. GB sliding below ambient temperature in H.C.P. metals are considered to compensate the incompatibility between neighboring grains by dislocation slip, which is called slip induced GB sliding.
ambient temperature creeph.c.p. metaldislocationgrain boundary sliding
Eiichi Sato、Tetsuya Matsunaga
展开 >
Institute of Spaceand Astronautical Science, JAXA 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan