首页|Grain Boundary Sliding Below Ambient Temperature in H.C.P. Metals

Grain Boundary Sliding Below Ambient Temperature in H.C.P. Metals

扫码查看
Hexagonal close-packed metals and alloys show significant creep behavior with extremely low activation energies at and below ambient temperature even below their 0.2% proof stresses. It is caused by straightly-aligned dislocation arrays in a single slip system without any dislocation cuttings. These dislocation arrays should, then, pile up at grain boundary (GB) because of violation of von Mises' condition in H.C.P. structure. The piled-up dislocations have to be accommodated by GB sliding. Electron back scatter diffraction (EBSD) analyses and atomic force microscope (AFM) observations were performed to reveal the mechanism of GB sliding below ambient temperature in H.C.P. metals as an accommodation mechanism of ambient temperature creep. EBSD analyses revealed that crystal lattice rotated near GB, which indicates the pile up of lattice dislocations at GB. AFM observation showed a step caused by GB sliding. GB sliding below ambient temperature in H.C.P. metals are considered to compensate the incompatibility between neighboring grains by dislocation slip, which is called slip induced GB sliding.

ambient temperature creeph.c.p. metaldislocationgrain boundary sliding

Eiichi Sato、Tetsuya Matsunaga

展开 >

Institute of Spaceand Astronautical Science, JAXA 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan

2010

Key engineering materials

Key engineering materials

ISSN:1013-9826
年,卷(期):2010.433
  • 1
  • 15