首页|New Methods for Characterizing Coating Properties at Ambient and Elevated Temperatures

New Methods for Characterizing Coating Properties at Ambient and Elevated Temperatures

扫码查看
In the paper, innovative methods for characterizing coatings' properties at ambient and elevated temperatures are introduced based on various experimental procedures. Nanoindentation results, which were obtained at elevated temperatures, are evaluated by FEM algorithms, rendering possible the determination of temperature dependent coating mechanical properties. Impact tests conducted on coated specimens revealed a non-linear film impact resistance versus the temperature. The latter results were evaluated by appropriate FEM supported procedures, to predict the coating fatigue endurance stress versus the temperature. In these investigations, the impact load was induced electromagnetically for a duration of ca. 1ms, depending on the force amplitude. To change the impact load characteristics, such as frequency, impact duration etc., a new test device has been developed, employing a piezoelectric actuator. This device enables the investigation of the impact time effect on the dynamic response of coated surfaces and on the coating fatigue endurance stress. Finally, diffusion phenomena in coatings were examined by a developed convenient experimental setup. A specimen is pressed onto a coated surface at adjustable high temperature and pressure in an inert atmosphere. After this test, the diffusion of characteristic elements into the coating and vice versa is detected by EDX-microanalyses. These results contribute, among others, to the description of diffusion phenomena between coatings and various materials.

PVD filmselevated temperaturesmechanical propertiesfatigue behaviourdiffusion

K.-D. Bouzakis、M. Batsiolas、G. Malliaris、M. Pappa、E. Bouzakis、G. Skordaris

展开 >

Laboratory for Machine Tools and Manufacturing Engineering, Aristoteles University of Thessaloniki, Thessaloniki, Greece Fraunhofer Project Center Coatings in Manufacturing, in Centre for Research and Technology Hellas in Thessaloniki, Greece and in Fraunhofer Institute for Production Technology in Aachen, Germany

2010

Key engineering materials

Key engineering materials

ISSN:1013-9826
年,卷(期):2010.438
  • 7
  • 12