International journal of electronic security and digital forensics: IJESDF2023,Vol.15Issue(3) :322-331.DOI:10.1504/IJESDF.2023.130665

Susceptibility of paediatric pneumonia detection model under projected gradient descent adversarial attacks

Raheel Siddiqi Syeda Nazia Ahraf Irfan Ali Kandhro
International journal of electronic security and digital forensics: IJESDF2023,Vol.15Issue(3) :322-331.DOI:10.1504/IJESDF.2023.130665

Susceptibility of paediatric pneumonia detection model under projected gradient descent adversarial attacks

Raheel Siddiqi 1Syeda Nazia Ahraf 1Irfan Ali Kandhro2
扫码查看

作者信息

  • 1. Department of Computer Science, Bahria University, Karachi Campus
  • 2. Department of Computer Science, Sindh Madressatul Islam University
  • 折叠

Abstract

Pneumonia is the leading cause of paediatric deaths worldwide. Timely diagnosis can help save a child's life, long-term health, etc. Chest X-ray (CXR) examination is an effective and economical means to diagnose pneumonia. However, there is lack of expert radiologists in many resource-constrained areas. Deep learning-based pneumonia diagnosis is a solution to this problem, but deep learning models are susceptible to adversarial attacks. This research study investigates the susceptibility of a paediatric pneumonia detection model under projected gradient descent (PGD) attack. Experimental results show that the diagnostic performance of the model degrades sharply when the magnitude of the perturbation, i.e., ε, is increased from 0.0001 to 0.009 but after that the performance remains almost stable and does not significantly degrade further. The lowest model accuracy attained under the attack is 33.33%. It has been shown that the attack is much more detrimental to the specificity of the model than its sensitivity. Moreover, it has also been demonstrated that the model's performance can be degraded to unacceptable levels while keeping the perturbations imperceptible.

Key words

security/projected gradient descent/adversarial attack/paediatric pneumonia/chest x-ray/CXR/deep learning

引用本文复制引用

出版年

2023
International journal of electronic security and digital forensics: IJESDF

International journal of electronic security and digital forensics: IJESDF

EI
ISSN:1751-911X
参考文献量19
段落导航相关论文