首页|Department of Computer Science and Engineering Reports Findings in Machine Learning (Mapping of soil suitability for medicinal plants using machine learning methods)
Department of Computer Science and Engineering Reports Findings in Machine Learning (Mapping of soil suitability for medicinal plants using machine learning methods)
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
New research on Machine Learning is the subject of a report. According to news reporting from Karnataka, India, by NewsRx journalists, research stated, "Inadequate conservation of medicinal plants can affect their productivity. Traditional assessments and strategies are often time- consuming and linked with errors." The news correspondents obtained a quote from the research from the Department of Computer Science and Engineering, "Utilizing herbs has been an integral part of the traditional system of medicine for centuries. However, its sustainability and conservation are critical due to climate change, over-harvesting and habitat loss. The study reveals how machine learning algorithms, geographic information systems (GIS) being a powerful tool for mapping and spatial analysis, and soil information can contribute to a swift decision-making approach for actual forethought and intensify the productivity of vulnerable curative plants of specific regions to promote drug discovery. The data analysis based on machine learning and data mining techniques over the soil, medicinal plants and GIS information can predict quick and effective results on a map to nurture the growth of the herbs. The work incorporates the construction of a novel dataset by using the quantum geographic information system tool and recommends the vulnerable herbs by implementing different supervised algorithms such as extra tree classifier (EXTC), random forest, bagging classifier, extreme gradient boosting and k nearest neighbor. Two unique approaches suggested for the user by using EXTC, firstly, for a given subregion type, its suitable soil classes and secondly, for soil type from the user, its respective subregion labels are revealed, finally, potential medicinal herbs and their conservation status are visualised using the choropleth map for classified soil/subregion. The research concludes on EXTC as it showcases outstanding performance for both soil and subregion classifications compared to other models, with an accuracy rate of 99.01% and 98.76%, respectively."