首页|North University of China Researcher Releases New Data on Robotics (Research on Multi-Hole Localization Tracking Based on a Combination of Machine Vision and Deep Learning)
North University of China Researcher Releases New Data on Robotics (Research on Multi-Hole Localization Tracking Based on a Combination of Machine Vision and Deep Learning)
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
Mdpi
Fresh data on robotics are presented in a new report. According to news originating from Taiyuan, People's Republic of China, by NewsRx correspondents, research stated, "In the process of industrial production, manual assembly of workpieces exists with low efficiency and high intensity, and some of the assembly process of the human body has a certain degree of danger." Financial supporters for this research include Natural Science Foundation of Shanxi Province, China. The news journalists obtained a quote from the research from North University of China: "At the same time, traditional machine learning algorithms are difficult to adapt to the complexity of the current industrial field environment; the change in the environment will greatly affect the accuracy of the robot's work. Therefore, this paper proposes a method based on the combination of machine vision and the YOLOv5 deep learning model to obtain the disk porous localization information, after coordinate mapping by the ROS communication control robotic arm work, in order to improve the anti-interference ability of the environment and work efficiency but also reduce the danger to the human body. The system utilizes a camera to collect real-time images of targets in complex environments and, then, trains and processes them for recognition such that coordinate localization information can be obtained. This information is converted into coordinates under the robot coordinate system through hand-eye calibration, and the robot is then controlled to complete multi-hole localization and tracking by means of communication between the upper and lower computers. The results show that there is a high accuracy in the training and testing of the target object, and the control accuracy of the robotic arm is also relatively high."
North University of ChinaTaiyuanPeople's Republic of ChinaAsiaEmerging TechnologiesMachine LearningMachine VisionRobotRoboticsRobots