首页|Findings from University of New South Wales Advance Knowledge in Artificial Intelligence (Novel artificial intelligence-based hypodensity detection tool improves clinician identification of hypodensity on non-contrast computed tomography in ...)
Findings from University of New South Wales Advance Knowledge in Artificial Intelligence (Novel artificial intelligence-based hypodensity detection tool improves clinician identification of hypodensity on non-contrast computed tomography in ...)
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
By a News Reporter-Staff News Editor at Robotics & Machine Learning Daily News Daily News-Researchers detail new data in artificial intelligence. According to news reporting from Kensington, Australia, by NewsRx journalists, research stated, "IntroductionIn acute stroke, identifying early changes (parenchymal hypodensity) on non-contrast CT (NCCT) can be challenging. We aimed to identify whether the accuracy of clinicians in detecting acute hypodensity in ischaemic stroke patients on a non-contrast CT is improved with the use of an Artificial Intelligence (AI) based, automated hypodensity detection algorithm (HDT) using MRI-DWI as the gold standard." The news correspondents obtained a quote from the research from University of New South Wales: "MethodsThe study employed a case-crossover within-clinician design, where 32 clinicians were tasked with identifying hypodensity lesions on NCCT scans for five a priori selected patient cases, before and after viewing the AI-based HDT. The DICE similarity coefficient (DICE score) was the primary measure of accuracy. Statistical analysis compared DICE scores with and without AI-based HDT using mixed-effects linear regression, with individual NCCT scans and clinicians as nested random effects. ResultsThe AI-based HDT had a mean DICE score of 0.62 for detecting hypodensity across all NCCT scans. Clinicians' overall mean DICE score was 0.33 (SD 0.31) before AI-based HDT implementation and 0.40 (SD 0.27) after implementation. AI-based HDT use was associated with an increase of 0.07 (95% CI: 0.02-0.11, p = 0.003) in DICE score accounting for individual scan and clinician effects. For scans with small lesions, clinicians achieved a mean increase in DICE score of 0.08 (95% CI: 0.02, 0.13, p = 0.004) following AIbased HDT use. In a subgroup of 15 trainees, DICE score improved with AI-based HDT implementation [mean difference in DICE 0.09 (95% CI: 0.03, 0.14, p = 0.004)]."
University of New South WalesKensingtonAustraliaAustralia and New ZealandArtificial IntelligenceComputed TomographyEmerging TechnologiesImaging TechnologyMachine LearningTechnology