首页|New Machine Learning Findings from Technical University Wien (TU Wien) Reported (Machine Learning Boosted Ab Initio Study of the Thermal Conductivity of Janus P tste Van Der Waals Heterostructures)
New Machine Learning Findings from Technical University Wien (TU Wien) Reported (Machine Learning Boosted Ab Initio Study of the Thermal Conductivity of Janus P tste Van Der Waals Heterostructures)
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
By a News Reporter-Staff News Editor at Robotics & Machine Learning DailyNews Daily News – Data detailed on Machine Learning have been presented. According to news reportingout of Vienna, Austria, by NewsRx e ditors, research stated, “Calculating the thermal conductivity ofheterostructur es with multiple layers presents a significant challenge for state -of -the -art ab initio methods.In this study we introduce an efficient neural-network force field (NNFF) to explore the thermal transportcharacteristics of van der Waals heterostructures based on PtSTe, using both the phonon Boltzmanntransport equat ion and molecular dynamics (MD) simulations.”
ViennaAustriaEuropeCyborgsEmergi ng TechnologiesMachine LearningTechnical University Wien (TU Wien)