首页|Patent Issued for Architecture to support tanh and sigmoid operations for inference acceleration in machine learning (USPTO 11995569)
Patent Issued for Architecture to support tanh and sigmoid operations for inference acceleration in machine learning (USPTO 11995569)
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
News editors obtained the following quote from the background information supplied by the inventors: “Applied Machine Learning (ML) is a booming field that utilizes a cascade of layers of nonlinear processing units and algorithms for feature extraction and transformation with a wide variety of usages and applications. ML typically involves two phases, training, which uses a rich set of training data to train a plurality of machine learning models, and inference, which applies the trained machine learning models to actual applications. Each of the two phases poses a distinct set of requirements for its underlying infrastructures. Various infrastructures may be used, e.g., graphics processing unit (GPU), a central processing unit (CPU), a Field Programmable Gate Array (FPGA), an Application Specific Integrated Circuit (ASIC), etc. Specifically, the training phase focuses on, as a non-limiting example, GPU or ASIC infrastructures that scale with the trained models and retraining frequency, wherein the key objective of the training phase is to achieve high performance and reduce training time. The inference phase, on the other hand, focuses on infrastructures that scale with the applications, user, and data, and the key objective of the inference phase is to achieve energy (e.g., performance per watt) and capital (e.g., return on investment) efficiency.
BusinessCyborgsEmerging TechnologiesMachine LearningMarvell Asia Pte Ltd