首页|Studies from Huzhou University Yield New Information about Machine Learning (Unv eiling the Re, Cr, and I Diffusion In Saturated Compacted Bentonite Using Machin e-learning Methods)

Studies from Huzhou University Yield New Information about Machine Learning (Unv eiling the Re, Cr, and I Diffusion In Saturated Compacted Bentonite Using Machin e-learning Methods)

扫码查看
By a News Reporter-Staff News Editor at Robotics & Machine Learning DailyNews Daily News - Data detailed on Machine Learning have been presented. According to news reportingfrom Huzhou, People’s Republic of C hina, by NewsRx journalists, research stated, “The safety assessmentof high-lev el radioactive waste repositories requires a high predictive accuracy for radion uclide diffusionand a comprehensive understanding of the diffusion mechanism. I n this study, a through-diffusionmethod and six machine-learning methods were e mployed to investigate the diffusion of ReO4-\docu-ment class[12pt]{minimal} \ usepackage{amsmath} \usepackage{ wasysym} \usepackage{amsfonts} usepackage{amssymb} \usepackage{ amsbsy} \usepackage{mathrsfs} \ usepackage{upgreek} \setlength{ \oddsidemargin}{-69pt} \ begin{document}$${ \hbox {ReO}_{ 4} <. >{-} }$$\end{ document}, HCrO4-\documentclass[12pt]{minimal} \usep ackage{amsmath} \usepackage{ wasysym} \usepackage{amsfonts} \ usepackage{amssymb} \usepackage{ amsbsy} \usepackage{mathrsfs} \ usepackage{upgreek}\setlength{ \oddsidemargin}{-69pt} \ begin{document}$${ \hbox {HCrO}_{ 4} <. >{-} }$$end{ document}, and I-\documentclass[12pt]{minimal} \usep ackage{amsmath} \usepackage{ wasysym}\usepackage{amsfonts} \ usepackage{amssymb} \usepackage{ amsbsy} \usepackage{mathrsfs} \ usepackage{upgreek} \setlength{ \oddsidemargin}{-69pt} \ begin{document}$${ \hbox {I} <. > {-}}$$end{document} in saturated compacted bentonite under different sa linities and compacted dry densities.”Funders for this research include National Natural Science Foundation of China ( NSFC), PostgraduateResearch and Innovation Project of Huzhou University, Scient ific Research Fund of Zhejiang ProvincialEducation Department, Huzhou science a nd technology planning project.

HuzhouPeople’s Republic of ChinaAsiaAluminum SilicatesBentoniteCyborgsEmerging TechnologiesInorganic Chemi calsMachine LearningOxidesOxygen CompoundsSilicic AcidSilicon Compound sSilicon DioxideHuzhou University

2024

Robotics & Machine Learning Daily News

Robotics & Machine Learning Daily News

ISSN:
年,卷(期):2024.(Jul.16)