首页|Finite-time fuzzy adaptive consensus control for state-constrained MIMO nonlinear MASs with switched topologies

Finite-time fuzzy adaptive consensus control for state-constrained MIMO nonlinear MASs with switched topologies

扫码查看
In this article, the adaptive fuzzy finite-time output feedback consensus control problem is investigated for multiple input and multiple output (MIMO) nonlinear multi-agent systems (MASs) with switched topologies and asymmetric state constraints. Fuzzy logic systems (FLSs) are utilised to approximate uncertain nonlinear dynamics, and a distributed observer and a state observer are established to estimate the unknown leader and system states, respectively. By constructing the barrier Lyapunov functions (BLFs), a finite-time output feedback consensus control scheme is presented via backstepping control technique. It is proved that the controlled MASs are stable, and the consensus errors converge in finite time. Moreover, the system states will not exceed the given bounds. Finally, the proposed finite-time consensus control approach is applied to control multiple unmanned surface vehicles (USVs), the simulation results check the feasibility of the developed finite-time consensus control methodology.

FLSsfinite-time consensus controlMIMO nonlinear MASsasymmetric state constraintsswitched topologies

Jun Zhang、Shaocheng Tong

展开 >

Dalian Maritime University

Dalian Maritime University||Liaoning University of Technology

2025

International journal of systems science

International journal of systems science

ISSN:0020-7721
年,卷(期):2025.56(1/4)
  • 28