首页|The influence of two common sterilization techniques on the corrosion of Mg and its alloys for biomedical applications

The influence of two common sterilization techniques on the corrosion of Mg and its alloys for biomedical applications

扫码查看
Abstract This paper studied the influence of two common sterilization techniques, ethylene oxide (EO) and gamma irradiation (GI), on the corrosion rate of four Mg‐based materials in CO 2 ‐bicarbonate buffered Hanks’ solution. The four materials were: high‐purity (HP)‐Mg, ZE41, ultra‐high purity (XHP)‐Mg, and XHP‐ZX00. The corrosion rate was measured through mass loss ( P m ) and hydrogen evolution ( P H ). Two‐way analysis of variance (ANOVA) was conducted to assess the effect of the sterilization techniques on the corrosion rates across the four materials. The ANOVA analyzed the variables of (1) material, (2) sterilization condition (EO, GI, and an unsterilized control group), and (3) the interaction between these two independent variables. Neither sterilization technique (EO and GI) significantly influenced the corrosion rate as measured by P m ( p ?<?0.84) nor P H ( p ?<?0.08). This result was consistent across the four materials tested, as there was no interaction between the test variables of material and sterilization condition for P m ( p ?<?0.49) or P H ( p ?<?0.27). As neither EO nor GI influenced the corrosion rates, either of these techniques warrants consideration for use on Mg‐based medical implants and devices. ? 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1907–1917, 2018.

sterilizationbiodegradationcorrosionbiocorrosion

Atrens Andrej、Johnston Sean、Shi Zhiming、Hoe Cherilyn、Uggowitzer Peter J.、Cihova Martina、L?ffler J?rg F.、Dargusch Matthew S.

展开 >

Materials Engineering, School of Mechanical and Mining EngineeringThe University of

Laboratory of Metal Physics and Technology, Department of MaterialsETH Zurich8093,Zurich,Switzerland

Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of

2018

Journal of biomedical materials research.

Journal of biomedical materials research.

ISSN:1552-4973
年,卷(期):2018.106(5)
  • 7
  • 72