首页|On the Turan numbers of kK(r) in l-partite graphs
On the Turan numbers of kK(r) in l-partite graphs
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
Given graphs G and H, the Turan number ex(G, H) of Hin G is the maximum number of edges in a subgraph of G that contains no H. Chen et al. determined ex(K-e1,(e2), kK(2)) for all 1 <= k = e(1) <= 2. De Silva et al. determined ex(Ke(,1)..,e(,k)Ke(r)) for all r >= 2 and 1 <= k = <= e(1) = center dot center dot center dot = e(r). Moreover, De Silva et al. proposed an interesting generalization of ex(Ke(,1)..,e(,k)Ke(r)): Determine ex(Ke(,1)..,e(,k)Ke(r)) for l = r. In this paper, we give a proof of ex(Ke(,1)..,e(,k)Ke(r)) = (k - 1) Sigma(l)(i=2)ei for all l = 2 and 1 = k = >= 1 = center dot center dot center dot = lambda. We also determine the Turan numbers ex (Ke(,1)..,e(,k)Ke(r)) for all k = 1 and e(4) = e(3) = e(2) = e(1) = 4(k - 1), which gives a positive solution to a problem due to De Silva et al. (C) 2021 Elsevier Inc. All rights reserved.