首页|Microstructure and durability performance of sustainable cementitious composites containing high-volume regenerative biosilica
Microstructure and durability performance of sustainable cementitious composites containing high-volume regenerative biosilica
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
To promote diatom-based biofuel productions in clean energy, this paper explores the potential of using biosilica as a renewable and regenerative byproduct from diatom-based biofuel production in cementitious materials. High-purity diatomite (DE), a biosilica model compound, is selected to investigate the microstructure and durability performance of diatom-based cementitious composites. The replacement of portland cement with 30 wt.% DE significantly enhances the resistance to leaching, reduces the rapid chloride permeability, but increases the drying shrinkage at early ages. The microstructure of DE-containing matrix is refined due to the lime-silica reaction, and the interfacial transition zone of DE-containing concrete is densified. Overall, the DE-induced microstructural changes enhance the durability performance of DE-containing cementitious composites, which in turn demonstrates the feasibility of using biosilica as a sustainable cement substitute. The use of biosilica from diatom-based biofuel production can potentially reduce the CO2 emissions of carbon-intensive concrete production and promote the development of clean energy.