首页|Organic phosphorus forms in a tropical sandy soil after application of organic residues of different quality
Organic phosphorus forms in a tropical sandy soil after application of organic residues of different quality
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
The addition of organic materials can improve soil fertility and phosphorus availability in agricultural soils. However, knowledge of organic P (Po) forms in soils with the incorporation of different quality residues is limited. This study investigated Po forms and determined the relationship between Po and soil properties in tropical sandy soils after application of local organic residues of different qualities, including groundnut stover (GN), tamarind leaf litter (TM), diptemcarp leaf litter (DP), and rice straw (RS). The Po forms were determined using a sequential extraction procedure and P-31 nuclear magnetic resonance (NMR) spectroscopy. Addition of residues, regardless of quality, had little effect on total Po accumulation, but it affected soil Po forms. Labile Po was a dominant form after incorporating high-quality residue (high nitrogen, low lignin, and low polyphenols) (e.g., GN), whereas nonlabile humic-Po and residual Po were dominant forms in soils treated with lower-quality residue with low N, high lignin, and high polyphenols (e.g., TM, DP, and RS). Using P-31 NMR spectroscopy, orthophosphate and phosphate monoester (mono-P) were the major forms of inorganic P and organic P in all residue-treated soils, respectively. High-quality residue incorporation increased diester, DNA, and teichoic acid. The results showed that phosphonate occurred in GN soil because of acidic conditions occurring when GN was applied. The Po forms in lower-quality residue additions were dominated by mono-P because these residues had elevated contents of lignin and polyphenols, which has the potential to produce humic substances that form complexes with soil minerals. Furthermore, the nonlabile Po had a positive association with available P in tropical sandy soils.