首页|Screening of biological properties of MoV2O2S2- and MoV2O4-based coordination complexes: Investigation of antibacterial, antifungal, antioxidative and antitumoral activities versus growing of Spirulina platensis biomass
Screening of biological properties of MoV2O2S2- and MoV2O4-based coordination complexes: Investigation of antibacterial, antifungal, antioxidative and antitumoral activities versus growing of Spirulina platensis biomass
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
This paper deals with the biological potential of coordination compounds based on binuclear core [MoV2O2E2]2+ (E = O or S) coordinated with commercially available ligands such as oxalates (Ox2- ), L-cysteine (L-cys2-), Lhistidine (L-his-), Iminodiacetate (IDA2-), Nitrilotriacetate (HNTA2- or NTA3-) or ethylenediamine tetraacetate (EDTA4-) by means of various in vitro assays in a screening approach. Results suggest that the obtained complexes show weak antibacterial and antifungal properties while not being cytotoxic on cancerous and mammalian cells. In contrast, [Mo2O2E2(L-cys)2]2- complexes stand out as powerful antioxidant, whereas [Mo2O2E2(EDTA)]2- associating tetraphenylphosphonium counter-cations display strong antibiotic activity. Finally, some complexes have evidenced a positive activity towards the growing of spirulina platensis together with a modification of the proportions of biological components inside the cells. These findings reveal promising bioactivity of the bridged binuclear Mo(+V) cores inside complexes and encourage further research for new highly active yet non-toxic molecules for biological and biomedical applications.