首页|Influence of the TiB2 content on the processability, microstructure and high-temperature tensile performance of a Ni-based superalloy by laser powder bed fusion
Influence of the TiB2 content on the processability, microstructure and high-temperature tensile performance of a Ni-based superalloy by laser powder bed fusion
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
? 2022 Elsevier B.V.The nickel-based GH3230 (Haynes 230) superalloy is widely used in the aerospace and power industries because of its excellent high-temperature strength and thermal stability. Owing to the crack susceptibility, however, GH3230 alloy offers poor processability processed by the laser powder bed fusion (LPBF) process. This paper systematically studies the processability, microstructure and high-temperature tensile performance of LPBF-fabricated GH3230 material modified by the addition of sub-micrometre TiB2 particles. The results reveal that the addition of TiB2 particles contributed to improving the processability of this alloy during the LPBF process. Also, the microcracking in LPBF-fabricated pure-GH3230 was addressed in the present study by introducing 1 wt% or 2 wt% sub-micrometre TiB2 particles to GH3230 powder. When the addition of TiB2 was up to 3 wt%, however, micro-cracks formed again. The micro-CT results confirmed that micro-cracks were the primary defects in the fabricated pure-GH3230 specimen, while only a limited number of open pores were detected in GH3230–1 wt% TiB2 and GH3230–2 wt% TiB2 specimens. The micro-cracks were categorised to solidification and solid-state cracking in terms of their formation mechanisms and characteristics. The yield-strength values of LPBF-fabricated GH3230–1 wt% TiB2 and GH3230–2 wt% TiB2 at 850 °C were examined to 254 MPa and 311 MPa, respectively, which were 29% and 59% higher than pure-GH3230. Compared to pure-GH3230, the elongation values of GH3230–1 wt% TiB2 and GH3230–2 wt% TiB2 were also significantly improved because of the elimination of micro-cracks. This work provides an effective route to eliminate cracks and to improve mechanical properties for Ni-based superalloys.
Additive manufacturingGH3230Laser powder bed fusionMicrocrackingNickel-based superalloy
Zhang Z.、Han Q.、Liu Z.、Wang L.、Wang X.、Yang X.、Ma T.、Gao Z.
展开 >
Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education School of Mechanical Engineering Shandong University
State Key Laboratory of Materials Processing and Die & Mould Technology Huazhong University of Science and Technology
Department of Industrial and Systems Engineering The Hong Kong Polytechnic University