首页|Rational design of injectable conducting polymer-based hydrogels for tissue engineering

Rational design of injectable conducting polymer-based hydrogels for tissue engineering

扫码查看
? 2021Recently, injectable conducting polymer-based hydrogels (CPHs) have received increasing attention in tissue engineering owing to their controlled conductivity and minimally invasive procedures. Conducting polymers (CPs) are introduced into hydrogels to improve the electrical integration between hydrogels and host tissues and promote the repair of damaged tissues. Furthermore, endowing CPHs with in situ gelation or shear-thinning properties can reduce the injury size and inflammation caused by implanted surgery materials, which approaches the clinical transformation target of conductive biomaterials. Notably, functional CPs, including hydrophilic CP complexes, side-chain modified CPs, and conducting graft polymers, improve the water-dispersible and biocompatible properties of CPs and exhibit significant advantages in fabricating injectable CPHs under physiological conditions. This review discusses the recent progress in designing injectable hydrogels based on functional CPs. Their potential applications in neurological treatment, myocardial repair, and skeletal muscle regeneration are further highlighted. Statement of significance: Conducting polymer-based hydrogels (CPHs) have broad application prospects in the biomedical field. However, the low water dispersibility and processability of conducting polymers (CPs) make them challenging to form injectable CPHs uniformly. For the first time, this review summarizes the functionalization strategies to improve the hydrophilicity and biocompatibility of CPs, which provides unprecedented advantages for designing and fabricating the physical/chemical crosslinked injectable CPHs. Besides, future challenges and prospects for further clinical transformation of injectable CPHs for tissue engineering are presented. This review's content is of great significance for the treatment of electroactive tissues with limited self-regeneration, including neurological treatment, myocardial repair, and skeletal muscle regeneration. Therefore, it is inspiring for the tissue engineering research of biomaterials and medical practitioners.

Conducting polymerInjectable hydrogelRegenerative medicineTissue engineering

Yu C.、Yao F.、Li J.

展开 >

School of Chemical Engineering and Technology Tianjin University

2022

Acta biomaterialia

Acta biomaterialia

EISCI
ISSN:1742-7061
年,卷(期):2022.139
  • 12
  • 171