首页| A robust two-dimensional model for the pyrolysis of plastic waste driven by self-sustaining smoldering

A robust two-dimensional model for the pyrolysis of plastic waste driven by self-sustaining smoldering

扫码查看
This study established a robust two-dimensional (2D) numerical model for plastic waste (PW) pyrolysis driven by self-sustaining smoldering. The smoldering-driven pyrolysis reactor consists of a smoldering chamber filled with char and sand and a pyrolysis chamber with a porous-matrix bed and PW particles. The PW could be melted and decomposed into value-added volatiles driven by the stable char smoldering heat. The findings revealed that the pyrolysis duration and product distribution could be regulated by the char concentration and Darcy air velocity. Higher PW contents shortened the volatiles' residence time in the pyrolysis chamber and controlled the pyrolysis product yields. The increased PW content could enhance the PW processing capacity potentially resulting in the recovery of more liquid and gaseous fuels. Moreover, the reactor's geometry significantly affected the pyrolysis chamber's temperature distribution and the PW processing capacity.

Plastic wastePyrolysisSelf-sustaining smolderingMathematical model

Ruming Pan、Gerald Debenest、Marco A.B. Zanoni

展开 >

Institut de Mecanique des Fluides de Toulouse (IMFT) - Universite de Toulouse, CNRS-MPT-UPS, Toulouse 31400, France

Department of Civil and Environmental Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada

2022

Transactions of The Institution of Chemical Engineers

Transactions of The Institution of Chemical Engineers

ISSN:0957-5820
年,卷(期):2022.162
  • 6
  • 48