首页|Formation of nanostructured surface layer, the white layer, through solid particles impingement during slurry erosion in a martensitic medium-carbon steel

Formation of nanostructured surface layer, the white layer, through solid particles impingement during slurry erosion in a martensitic medium-carbon steel

扫码查看
The extremely altered topmost surface layer, known as the white layer, formed in a medium-carbon low-alloy steel as result of impacts by angular 10-12 mm granite particles during the slurry erosion process is comprehensively investigated. For this purpose, the characteristics, morphology, and formation mechanism of this white layer are described based on the microstructural observations using optical, scanning and transmission electron microscopies as well as nanoindentation hardness measurements and modelling of surface deformation. The white layer exhibits a nanocrystalline structure consisting of ultrafine grains with an average size of 200 nm. It has a nanohardness level of around 10.1 GPa, considerably higher than that of untempered martensitic bulk material (5.7 GPa) achieved by an induction hardening treatment. The results showed that during the high-speed slurry erosion process, solid particle impacts brought forth conditions of high strain, high strain rate, and multidirectional strain paths. This promoted formation of a cell-type structure at first and later, after increasing the number of impacts, development of subgrains following by subgrain rotation and eventually formation of a nanocrystalline structure with ultra-high hardness. The model confirmed that high strain conditions - much higher than required for the onset of plastic deformation - can be achieved on the surface resulting in severe microstructural and property changes during the slurry erosion test.

White layerMartensitic steelSlurry erosionNanocrystalline structureCell formationMartensite deformationNanohardness

V. Javaheri、S. Sadeghpour、P. Karjalainen、M. Lindroos、O. Haiko、N. Sarmadi、S. Pallaspuro、K. Valtonen、F. Pahlevani、A. Laukkanen、J. Komi

展开 >

Materials and Mechanical Engineering, Centre for Advanced Steels Research, University of Oulu

Integrated Computational Materials Engineering, VTT Technical Research Centre of Finland

Centre for Sustainable Materials Research and Technology, SMaRT@UNSW, School of Materials Science and Engineering

Tampere Wear Center, Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University

展开 >

2022

Wear

Wear

EISCI
ISSN:0043-1648
年,卷(期):2022.496/497
  • 5
  • 53