首页|Estimation of bulk electrical conductivity in saline medium with contaminated lead solution through TDR coupled with machine learning

Estimation of bulk electrical conductivity in saline medium with contaminated lead solution through TDR coupled with machine learning

扫码查看
Time-domain reflectometry (TDR) has been used for the characterization of media; however, the results of TDR tests significantly differ according to the types of solutions. The objective of this study is to suggest a new relationship between TDR output values and bulk electrical conductivity based on a machine learning algorithm for enhancing the reliability of TDR measurement. Various salinities (0%, 1%, 2%, and 3%) and lead concentrations (0, 0.5, 1, 2, 5, and 10 mg/L) are applied along with silica sand, classified as SP in USCS, to create media. A laboratory test is performed to measure the TDR waveform at the bottom of the cylindrical cell, and a resistance probe is also installed to obtain the true bulk electrical conductivity in the cell. A deep neural network machine learning algorithm is applied to establish the relationship between the TDR output value and the bulk electrical conductivity at each frequency of 0.1, 0.12, 1, 10, and 100 kHz. The highly important variables are also defined through random forest. This study demonstrates that the TDR can be reliably converted into bulk electrical conductivity when two different solutions are mixed.(c) 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.

Bulk electrical conductivityLead solutionDeep neural networkSalinityTime-domain reflectometry (TDR)TIME-DOMAIN REFLECTOMETRYSOIL-WATER CONTENTREFLECTION

Hong, Won-Taek、Lee, Jong-Sub、Lee, Dongsoo、Yoon, Hyung-Koo

展开 >

Gachon Univ

Korea Univ

Daejeon Univ

2022

Transactions of The Institution of Chemical Engineers

Transactions of The Institution of Chemical Engineers

ISSN:0957-5820
年,卷(期):2022.161
  • 7
  • 41