首页|Reflection symmetry detection of shapes based on shape signatures
Reflection symmetry detection of shapes based on shape signatures
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
We present two novel shape signature-based reflection symmetry detection methods with their theoretical underpinning and empirical evaluation. LIP-signature and R-signature share similar beneficial properties allowing to detect reflection symmetry directions in a high-performing manner. For the shape signature of a given shape, its merit profile is constructed to detect candidates of symmetry direction. A verification process is utilized to eliminate the false candidates by addressing Radon projections. The proposed methods can effectively deal with compound shapes which are challenging for traditional contour-based methods. To quantify the symmetric efficiency, a new symmetry measure is proposed over the range [0, 1]. Furthermore, we introduce two symmetry shape datasets with a new evaluation protocol and a lost measure for evaluating symmetry detectors. Experimental results using standard and new datasets suggest that the proposed methods prominently perform compared to state of the art. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )