首页|Dependence of the contact line roughness exponent on the contact angle on substrates with dilute mesa defects: numerical study

Dependence of the contact line roughness exponent on the contact angle on substrates with dilute mesa defects: numerical study

扫码查看
Abstract We compute the roughness exponent of the averaged contact line width of a liquid on heterogeneous substrates with randomly distributed dilute defects in statics. We study the case of circular “mesa”-type defects placed on homogeneous base. The shape of the liquid meniscus and the contact line are obtained numerically, using the full capillary model when a vertical solid plate, partially dipped in a tank of liquid, is slowly withdrawing from the liquid. The obtained results imply that the contact line roughness exponent depends on the contact angle θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, which the liquid meniscus forms with the solid homogeneous base. The roughness exponent grows when |θ-90°|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |\theta - 90^{\circ } |$$\end{document} decreases, and it changes from 0.5 at |θ-90°|=70°\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\theta - 90^{\circ } |= 70^{\circ }$$\end{document} to 0.67 at |θ-90°|=0°\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\theta - 90^{\circ } |= 0^{\circ }$$\end{document}. A wide range of contact angles (60°\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$60^{\circ }$$\end{document}–107.5°\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$107.5^{\circ }$$\end{document}) is present, where the roughness exponent is practically constant, equal to previously obtained experimental results on the magnitude of the roughness exponent and its dependence on θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}.Graphic abstract

Iliev Stanimir、Pesheva Nina、Iliev Pavel

展开 >

Institute of Mechanics, Bulgarian Academy of Sciences

ETH Zurich, Computational Physics for Engineering Materials

2022

The European physical journal

The European physical journal

ISSN:1292-8941
年,卷(期):2022.45(8)
  • 29