首页|Evolution of impact breakage characterisation: Re-defining t-family relationship

Evolution of impact breakage characterisation: Re-defining t-family relationship

扫码查看
<![CDATA[<ce:abstract xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns="http://www.elsevier.com/xml/ja/dtd" id="ab0005" xml:lang="en" view="all" class="author"><ce:section-title id="st0005">Abstract</ce:section-title><ce:abstract-sec id="as0005" view="all"><ce:simple-para id="sp0080" view="all">Accurate characterisation of ore competence through controlled single particle impact can enable improved modelling of comminution process response to ore variability. A simple relationship is presented to relate the energy input and feed particle size to the breakage progeny with two fitting parameters. Previous techniques have focused either on low energy repeated impacts or high energy single impacts and have been applied over relatively small ranges of particle sizes. The method presented builds on previous understanding to unite these two disparate fields on feed particle sizes over more than two orders of magnitude. The method has been tested on 5 ores from 37.5mm to 250μm over energies from 0.02 to 3.5kWh/t. The resultant standard error of 3.3% is lower than other benchmarked models, with considerably fewer fitting parameters and no use of splining functions required. The direct calculation of appearance function for any feed size and input energy renders the proposed model well suited to incorporation in comminution process models. Further testing is required on additional ores, and further interpretation is required to obtain mechanistic explanations for the empirical fits to the model parameters.</ce:simple-para></ce:abstract-sec></ce:abstract><ce:abstract xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns="http://www.elsevier.com/xml/ja/dtd" id="ab0010" class="graphical" xml:lang="en" view="all"><ce:section-title id="st0010">Graphical abstract</ce:section-title><ce:abstract-sec id="as0010" view="all"><ce:simple-para id="sp0085" view="all">Example of the model relationship between feed particle size and percentage passing<ce:italic>t<ce:inf loc="post">1.2</ce:inf></ce:italic>(probability of breakage) and<ce:italic>t<ce:inf loc="post">10</ce:inf></ce:italic>(traditional degree of breakage).</ce:simple-para><ce:simple-para>Display Omitted</ce:simple-para></ce:abstract-sec></ce:abstract><ce:abstract xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns="http://www.elsevier.com/xml/ja/dtd" id="ab0015" class="author-highlights" xml:lang="en" view="all"><ce:section-title id="st0015">Highlights</ce:section-title><ce:abstract-sec id="as0015" view="all"><ce:simple-para id="sp0090" view="all"><ce:list id="l0005"><ce:list-item id="li1005"><ce:label>?</ce:label><ce:para id="p1005" view="all">A new two-parameter model is presented to fully describe the progeny size resulting from single sided impact breakage.</ce:para></ce:list-item><ce:list-item id="li0005"><ce:label>?</ce:label><ce:para id="p0005" view="all">An accurate fit is achieved on 5 ores over a wide range of sizes and energies –0.25 to 37.5mm and 0.02 to 3.5kWh/t.</ce:para></ce:list-item><ce:list-item id="li0010"><ce:label>?</ce:label><ce:para id="p0010" view="all">This approach provides a link between low energy, probability of breakage and high energy, t<ce:inf loc="post">10</ce:inf>models.</ce:para></ce:list-item><ce:list-item id="li0015"><ce:label>?</ce:label><ce:para id="p0015" view="all">This technique reduced the number of model parameters from 18 to 2 or 3 and halved the average standard error to 3.3%.</ce:para></ce:list-item></ce:list></ce:simple-para></ce:abstract-sec></ce:abstract>]]>

ComminutionEnergyBreakageCharacterisationAppearance functions

Grant R. Ballantyne、Benjamin Bonfils、Malcolm S. Powell

展开 >

The University of Queensland, Sustainable Minerals Institute, Julius Kruttschnitt Mineral Research Centre

2017

International Journal of Mineral Processing

International Journal of Mineral Processing

SCI
ISSN:0301-7516
年,卷(期):2017.168
  • 7
  • 26