首页|Tunable photoluminescence of LiNbO3: RE3+ (RE3+ = Dy3+, Sm3+, Dy3+/Sm3+) single-phase phosphors for warm white LEDs

Tunable photoluminescence of LiNbO3: RE3+ (RE3+ = Dy3+, Sm3+, Dy3+/Sm3+) single-phase phosphors for warm white LEDs

扫码查看
? 2022 Elsevier B.V.LiNbO3 single-phase phosphors with varying single-doping and co-doping contents of Dy3+ and Sm3+ ions were fabricated via the solid phase reaction. All the X-ray diffractions of these samples revealed that they belonged to the single-phase trigonal structure of LiNbO3. LiNbO3: Dy3+ phosphors could have a neutral white light at 392 nm excitation owing to two strong emission bands (at 488 and 585 nm). Upon the excitation of 412 nm, LiNbO3: Sm3+ phosphors produced orange-red light which attributed to the biggest emission of Sm3+ at 613 nm. The most appropriate doping content of Dy3+ and Sm3+ and the concentration quenching mechanism were also examined. The PL spectra of Dy3+ matched well with the PLE spectra of Sm3+, implying that the energy might be delivered from Dy3+ to Sm3+. At 392 nm excitation, Dy3+ and Sm3+ co-doping LiNbO3 phosphors showed tunable photoluminescence from ordinary to warm white light when doped with more Sm3+ ions. The process of Dy3+ passing on the energy to Sm3+ was validated through the PL spectra of LiNbO3: Dy3+/Sm3+ phosphors. The decay lifetimes also affirmed the energy transfer process. Moreover, Li0.97NbO3: 0.02Dy3+/0.01Sm3+ phosphors exhibited admirable thermal property with the activation energy 0.15 eV. Hence, the results strongly suggested that LiNbO3: Dy3+/Sm3+ phosphors could be applied to fabricate warm white LEDs.

Energy transferLiNbO3: Dy3+/Sm3+ phosphorsTunable photoluminescenceWarm white light

Min Z.、Zeng Q.、Chen S.、Qin Y.、Yao C.

展开 >

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices School of Information and Photoelectronic Science and Engineering South China Normal University

Research Resources Center South China Normal University

2022

Journal of Alloys and Compounds

Journal of Alloys and Compounds

EISCI
ISSN:0925-8388
年,卷(期):2022.924
  • 12
  • 53