Neural Networks2022,Vol.14613.DOI:10.1016/j.neunet.2021.11.028

Deep two-way matrix reordering for relational data analysis

Watanabe C. Suzuki T.
Neural Networks2022,Vol.14613.DOI:10.1016/j.neunet.2021.11.028

Deep two-way matrix reordering for relational data analysis

Watanabe C. 1Suzuki T.1
扫码查看

作者信息

  • 1. Graduate School of Information Science and Technology The University of Tokyo
  • 折叠

Abstract

? 2021 Elsevier LtdMatrix reordering is a task to permute the rows and columns of a given observed matrix such that the resulting reordered matrix shows meaningful or interpretable structural patterns. Most existing matrix reordering techniques share the common processes of extracting some feature representations from an observed matrix in a predefined manner, and applying matrix reordering based on it. However, in some practical cases, we do not always have prior knowledge about the structural pattern of an observed matrix. To address this problem, we propose a new matrix reordering method, called deep two-way matrix reordering (DeepTMR), using a neural network model. The trained network can automatically extract nonlinear row/column features from an observed matrix, which can then be used for matrix reordering. Moreover, the proposed DeepTMR provides the denoised mean matrix of a given observed matrix as an output of the trained network. This denoised mean matrix can be used to visualize the global structure of the reordered observed matrix. We demonstrate the effectiveness of the proposed DeepTMR by applying it to both synthetic and practical datasets.

Key words

Matrix reordering/Neural network/Relational data analysis/Visualization

引用本文复制引用

出版年

2022
Neural Networks

Neural Networks

EISCI
ISSN:0893-6080
参考文献量35
段落导航相关论文