首页|A supersymmetric approach to the problem of micro-bending attenuation in optical waveguides
A supersymmetric approach to the problem of micro-bending attenuation in optical waveguides
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
? 2021 Elsevier B.V.Micro-bending is a well-known source of loss in optical waveguides. By treating the micro-bending as a stochastic process, the problem of loss mitigation can be modeled in terms of a Fokker–Planck equation. Given an initial refractive index profile, and taking micro-bending into account, we develop a formalism to derive a new refractive index profile which potentially results in less loss. Our formalism is based on applying the techniques of Supersymmetric Quantum Mechanics to a Fokker–Planck equation that is associated with a particular refractive index profile. We derive a non-linear differential equation, whose solutions determine whether an index profile can undergo a supersymmetric transformation that results in less loss. As an explicit example, we consider a monomial index profile. We show that there exists a range of values for the monomial exponent which results in the new index profile having less loss.