首页|Fungal biomass and microbial necromass facilitate soil carbon sequestration and aggregate stability under different soil tillage intensities
Fungal biomass and microbial necromass facilitate soil carbon sequestration and aggregate stability under different soil tillage intensities
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
? 2022 The AuthorsThe aim of global carbon (C) neutrality brings soils and their potential for C storage into the spotlight. Improved agricultural management techniques such as minimum or no-tillage are thought to foster soil C sequestration. However, the underlying mechanisms are still not well understood. In this study, we investigated the inter-relations of soil organic C (SOC), fungal biomass, microbial necromass biomarkers, and aggregate stability in rhizosphere and bulk soil after thirteen years of reduced tillage intensities (reduced, minimum, and no-tillage). Overall, rhizosphere and bulk soil were indifferent in their response to reduced tillage. Reducing tillage intensity increased SOC and nitrogen stocks and dissolved organic C contents in the following order: minimum > no-tillage > reduced > conventional. Aggregate stability showed the strongest increase under no-tillage. Interestingly, ergosterol contents were highest under reduced and minimum tillage followed by no-tillage. The amino sugars muramic acid, galactosamine, and glucosamine – proxies for soil microbial-derived necromass – showed similar increases under all three tillage reduction systems. Structural equation modelling revealed that increased dissolved organic C contents under reduced tillage intensity facilitated SOC sequestration and aggregate stability through enhanced fungal biomass to necromass turnover. Thus, reducing soil tillage intensity is a valuable tool to facilitate microbial growth and hence to increase SOC sequestration in agricultural soils.