首页|Tuning crystal phase of molybdenum carbide catalyst to induce the different selective hydrogenation performance
Tuning crystal phase of molybdenum carbide catalyst to induce the different selective hydrogenation performance
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
alpha-MoC, 8-Mo2C, and MoC-Mo2C were synthesized and investigated in the selective hydrogenation of 1,3 -butadiene to understand the effect of crystal phases. The catalysts were characterized by XRD, N-2-physisorption, SEM, TEM, XPS and chemisorptions. The adsorption properties and electronic properties over MoC(001) and Mo2C(001) were investigated by DFT calculations. The catalysts were evaluated at low and high temperatures in a fixed-bed reactor. beta-Mo2C exhibits high activity and low butenes selectivity, due to the high concentration of hydrogen at each active site as well as the stronger adsorption and higher capacity of alkene; MoC-Mo2C shows better stability due to synergetic effect. At high temperature, the reaction rate is more dependent on the P-H2 than P-C4H6. Increasing P-H2 could promote the activity and reduce oligomers formation. 8-Mo2C exhibits the best performance at high temperatures concerning its high activity and the inhibition of oligomerization. This work is valuable for the non-precious metal catalyst development.