首页|Optimization of high throughput virtual screening by combining shape-matching and docking methods

Optimization of high throughput virtual screening by combining shape-matching and docking methods

扫码查看
Receptor flexibility is a critical issue in structure-based virtual screening methods. Although a multiple-receptor conformation docking is an efficient way to account for receptor flexibility, it is still too slow for large molecular libraries. It was reported that a fast ligand-centric, shape-based virtual screening was more consistent for hit enrichment than a typical single-receptor conformation docking. Thus, we designed a "distributed docking" method that improves virtual high throughput screening by combining a shape-matching method with a multiple-receptor conformation docking. Database compounds are classified in advance based on shape similarities to one of the crystal ligands complexed with the target protein. This classification enables us to pick the appropriate receptor conformation for a single-receptor conformation docking of a given compound, thereby avoiding time-consuming multiple docking. In particular, this approach utilizes cross-docking scores of known ligands to all available receptor structures in order to optimize the algorithm. The present virtual screening method was tested for reidentification of known PPAR gamma and p38 MAP kinase active compounds. We demonstrate that this method improves the enrichment while maintaining the computation speed of a typical single-receptor conformation docking.

PROTEIN FLEXIBILITYMOLECULAR DOCKINGDRUG DISCOVERYLIGAND DOCKINGCONFORMATIONACCURACYDESIGN

Lee HS、Choi J、Kufareva I、Abagyan R、Filikov A、Yang Y、Yoon S

展开 >

Sookmyung Womens Univ, Res Ctr Womens Dis, Dept Biol Sci, Seoul 140742, South Korea

Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA

ArQule Inc, Woburn, MA 01801 USA

2008

Journal of chemical information and modeling

Journal of chemical information and modeling

EISCI
ISSN:1549-9596
年,卷(期):2008.48(3)